
1

Copyright DASSAULT SYSTEMES 2003 1

ENOVIA Training
Foils

Version 5 Release 11
May 2003

EDU-ENOV-E-LAL-AF-V5R11

LCA Administration
Advanced (6)

Lifecycle
Customization

Copyright DASSAULT SYSTEMES 2003 2

Course Presentation

Objectives of the Course
In this course, you will see how to modify lifecycles.

Targeted audience
ENOVIA LCA Programmers

Prerequisites:
CAA V5 Programming

45 min.

2

Copyright DASSAULT SYSTEMES 2003 3

Table of Contents

1. ENOVIA V5 : Lifecycle Customization P.1
Objectives of the courses P.2
Table of Contents p.3
Planning P.4

2. Lifecycle Objectives p.5
Introduction p.6
Lifecycle Management p.7
State Machine p.8
Lifecycle Graph p.9

3. Lifecycle Functionalities p.10
Lifecycle Object Model p.11
Root Status p.13
Status p.14
Transition p.15
Condition p.18
Predicate p.19
Operation p.20
Command p.21

4. How are Graphs used in GUI p.22
Lifecycle Tree View p.23
Lifecycle Graph View p.24
Lifecycle Gate View p.25

5. How to customize the default Graphs p.26
Default Graphs p.27
To Customize Default Graphs p.28

6. To Sum Up p.29

Copyright DASSAULT SYSTEMES 2003 4

Planning

In this course, you will learn:

Lifecycle objectives
Lifecycle functionalities
How are Graphs used in GUI
How to customize the default Graphs

3

Copyright DASSAULT SYSTEMES 2003 5

Lifecycle Objectives

Keep in mind some Concepts

Introduction
Lifecycle Management
State Machine
Lifecycle Graph

Copyright DASSAULT SYSTEMES 2003 6

Introduction

The purpose of a lifecycle is to define a status progression of an object
throughout object’s existence. This status progression is largely dependent
on the company’s business practices, which makes the task of defining a
single lifecycle to be universally used by everybody virtually impossible.

ENOVIA LCA provides a user with a mechanism to define these lifecycles
and attach them to any instance of any object.

4

Copyright DASSAULT SYSTEMES 2003 7

Lifecycle Management

State AState A

LifecLifecycleycle ModelModelProduct ModelProduct Model

Dependencies

Dependency

Workflow
Triggers

Triggers

Lifecycle Model can be attached to different objects at different levels of the
Product Tree
Interdependencies between Lifecycle Models (managed through implemented
“Conditions” to go across a gate)
Lifecycle is the mega-flow of product development and Workflow is the micro-flow
within that lifecycle model

Lifecycle Model can be attached to different objects at different levels of the
Product Tree
Interdependencies between Lifecycle Models (managed through implemented
“Conditions” to go across a gate)
Lifecycle is the mega-flow of product development and Workflow is the micro-flow
within that lifecycle model

Trans.1 State BState B State CState C

State XState X State YState Y State ZState Z

Tran.2 Trans.3 CompletedCompleted

Trans. P Trans. Q Trans. R CompletedCompleted

Copyright DASSAULT SYSTEMES 2003 8

State Machine

A State Machine is an oriented cyclic graph. It is composed of states linked
between them using incoming and outgoing transitions. A transition can be
associated with a condition and an operation. A transition can be triggered
only if its condition is true, then it executes its associated operation which
is composed of one or several commands.

The commands of a state machine can be:
either standard commands provided by ENOVIA LCA
either commands programmed by the customization developer in the form of a
late type extension

5

Copyright DASSAULT SYSTEMES 2003 9

Lifecycle Graph

The Lifecycle Graph is a state machine which modelizes the different status
of an object during its whole life. For example, a software can go through
the following statuses: design, development, industrialization, maintenance,
end of life. The different actors (designers, programmers, testers...) make it
progress in the lifecycle by promoting it or regress by demoting it.

ENOVIA LCA enables the definition of a lifecycle for each object.

Copyright DASSAULT SYSTEMES 2003 10

Lifecycle Functionalities

Graph description

Lifecycle Object Model
Root Status
Status
Transition
Condition
Predicate
Operation
Command

6

Copyright DASSAULT SYSTEMES 2003 11

Lifecycle Object Model (1/2)

ENOVIA Lifecycle is represented as a graph. This graph is defined by set of
states and possible transitions. Each state can have multiple transitions
attached to it.

Any object can have a lifecycle graph attached to it. When promote action is
invoked on the object, the Graph Manager will attempt to execute transitions
associated with the current state of this object (method
CATVpmGraphMng::StepForward). Transitions have a priority associated
with them.

Transitions with higher priorities will be tried first. Transition may have a
condition associated with it. In this case, transition is executed only if
condition (represented as a set of predicates) evaluates to true.

An optional operation can be executed upon valid transition. Operation
consists of a set of commands, each of which can have its own condition. If
condition associated with a command is true, this command will be
executed upon the execution of this transition.

Copyright DASSAULT SYSTEMES 2003 12

Lifecycle Object Model (2/2)

State BState A

The Concept of States and Transitions

Trans.1 Trans.2 State X

State RulesState RulesState Rules Transition Jump Rules(Condition)Transition Jump Rules(Condition)Transition Jump Rules(Condition)

Trans.3 Completed

• Define product lifecycle into phases and gates
• Do not define the “How”. It is too complex.
• Define “What” must be accomplished
• Define “Measurements” as to whether “What” has been accomplished or not. Define rules to cross gates
• Break the product down into components and recursively define their(components) lifecycle
• Interlink the lifecycles from top to the bottom of the whole product definition
• When a product component moves to a higher maturity level, the system will automatically check “Gate” rules and the

“Dependency” rules

Triggers(Operation)
•Outside processes
•Workflow

Triggers(Operation)Triggers(Operation)
•Outside processes
•Workflow

7

Copyright DASSAULT SYSTEMES 2003 13

Root Status

Root status entity contains the name of the graph, and reference to the
initial state of the lifecycle. The name of the graph must be unique.Theses
parameters are defined inside the entities: GIMaster and GIVersion.

Copyright DASSAULT SYSTEMES 2003 14

Status

Status entity contains the set of available transitions and the name of the
state. A State can be associated to multiple transitions.

In Work ReleasedApproved

8

Copyright DASSAULT SYSTEMES 2003 15

Transitions (1/3)

Mechanism to advance an object from one state to the next.
Can have a condition and/or post-transition operation

In Work

Condition Operation Released

Approved

Transition A

Condition

Transition B

Copyright DASSAULT SYSTEMES 2003 16

Transitions (2/3)

Terminal attribute of a transition entity contains transition entity name.

Next_state denotes the destination state of this transition.

Index determines priority of the transition. It is possible to have multiple
transitions from the same state with the same name, and in this case
transition with the highest priority (smallest index) is executed first. If this
transition cannot be executed, transition with the next highest priority is
tried.

Condition associated with a transition determines whether this transition
will be executed. Operation (process) associated with transition determines
actions taken if the transition is successfully executed.

9

Copyright DASSAULT SYSTEMES 2003 17

Transitions (3/3)
Initial_state: string

Copyright DASSAULT SYSTEMES 2003 18

Conditions

Condition consists of a set of predicates that are evaluated (if this condition
is attached to transition), or executed if this condition is attached to
command.

Condition contains late type of a class to evaluate predicates

10

Copyright DASSAULT SYSTEMES 2003 19

Predicates

Predicate consists of four parts: object name, operator, related_value and
attribute. Related_value, attribute and operator allows one to specify
expressions similar to "quantity >= 4", where attribute is "quantity",
operator is ">=", and related_value is "4". Note that in this case the
predicate is evaluated and it uses comparison operator. If the predicate is
executed, this operator is assignment.

Usually, if the name is NULL, the evaluated attribute is taken on the object to
which this lifecycle is attached.The object name denotes the instance in a
pool on which this attribute is evaluated. Each time a graph is called, the
objects on which occurs the current operation are put in an object
pool.Objects can be placed into pools under specific names to permit graph
conditions and commands to retrieve it. It is up to the application to make
sure that the object with a given name is in the pool when the predicate is
evaluated.
Predicates are Boolean expressions on current or related objects.

Predicate1: ‘Release Approval.status == “complete”
Predicate2: ‘Design Maturity > 85%’

Copyright DASSAULT SYSTEMES 2003 20

Operation

Operation contains a set of commands that are executed when transition
had taken place.

11

Copyright DASSAULT SYSTEMES 2003 21

Command

Command has a statement, parameters and condition. Statement can be a
late type of a class which will execute this command. Condition contains a
set of predicates that are executed as described above.

Copyright DASSAULT SYSTEMES 2003 22

How are Graphs used in GUI

Lifecycle GUI is implemented as a navigator View with three major areas: tree
of lifecycles, lifecycle graph definition and lifecycle gate definition. These views
can be resized at will or minimized using one-touch expand

Lifecycle Tree View
Lifecycle Graph View
Lifecycle Gate View

12

Copyright DASSAULT SYSTEMES 2003 23

Lifecycle Tree View

Lifecycle tree view represents a list of all available lifecycles. It also provide
a user with a popup menu which will enable him/her to create new lifecycle
graphs.

Expand the folder and the list of lifecycles
now shows up.

Copyright DASSAULT SYSTEMES 2003 24

Lifecycle Graph View

At this time, lifecycle graph is displayed as its transition matrix. In future, a
graphical representation should also be available.

The states where transitions originate from are located in the first column of
the table, transition destinations are located in the first row. Cells at their
intersection display a gate name if the gate from From state to To state
exists.

View the lifecycle graph for
an existing Lifecycle.

13

Copyright DASSAULT SYSTEMES 2003 25

Lifecycle Gate View

Lifecycle gate view is a notebook that allows user to view or enter complete
definition of a state.

Copyright DASSAULT SYSTEMES 2003 26

How to customize the default Graphs

You will be able to import your new Graphs

Default Graphs
To Customize Default Graphs

14

Copyright DASSAULT SYSTEMES 2003 27

Default Graph

For the PRODUCT Package a "default" customization graph is available for
all the objects

That file is delivered in the $OS/reffiles/sample directory. It is called
VPM_VPMObject.VGraph

All the PRODUCT instances inherite this default graph if a new one is not
attached to its

Copyright DASSAULT SYSTEMES 2003 28

To Customize Default Graphs

Using the ENOVIA LCA GUI, copy / paste the VPM_VPMObject_V_status

Change its name, for instance: VPMItemInstance_V_status

Export it:
Connect as dictionary owner

catstart –run “VPMGRAPHADM Export VPMItemInstance_V_status
exportdirectory/exportfilename”

Edit it to add a new state and transitions for instance

Import the new graph
catstart –run “VPMGRAPHADM Import exportfilename”

15

Copyright DASSAULT SYSTEMES 2003 29

To Sum Up

In this course you have seen :

Lifecycle objectives
Lifecycle functionalities
How are Graphs used in GUI
How to customize the default Graphs

