DASSAULT iNni
SYSTEMES CATIA Training
Folils

fm [pem et Braes Rt Bar s o e game ppe
oo [AEW m A ssd (1w
FoE Lo HE Y & .

Smr=F gt i Bl &l =

——-CAA V5 For CATIA
‘| Foundations

SR B oo M EATIA T

o ———— | I

Version 5 Release 7
July 2001

FOR-CAT-E-CAA-F-V5R7

Copyright DASSAULT SYSTEMES 2000 1

CAA V5 For CATIA
Foundations

Objectives of the Course

In this course you will learn the CAA V5 development platform, know the foundation

components, and understand the architecture of a CATIA V5 application following the
Model/View/Controller design pattern.

Targeted audience

C++ Programmers who intend to develop CAA Applications (interactive or batch)

Prerequisites:
BT CATIA V5 user interface principles (Mandatory)
(S -y 5 days C++ industrial programming practice (Mandatory)
R ——

COM (Microsoft Object Model) notions (Nice to have)
Microsoft Developer Studio practice (Nice to have)

Copyright DASSAULT SYSTEMES 2000 2

Table of Contents

1. Native CATIA V5 Openness Positioning
Introduction
Openness tools
Some Case studies
Recommendations

2. CAA V5 Development Environment
A Component Architecture
Workspaces and Frameworks
Compilation Tools
MSDev Integration
Other Tools
CAA V5 Encyclopedia
Programming Rules

3. CAA V5 Object Modeler
Why a New Object Modeler?
The Interface / Implementation Pattern
Between Interfaces and implementations
Object Life Cycle Management
Extension Mechanism
Late Typing

Copyright DASSAULT SYSTEMES 2000

Table of Contents — Continued

4. CAAV5 ObjectSpecsModeler
Introduction to Specification Modeling
Object Specs Modeler Objectives
About Features
Programming Tasks
About Features Extensions
Programming Tasks

5. CAA V5 Visualization
Framework Objectives
Manage the Presentation
Model / View / Controller Architecture
Visualization Interfaces

6. CAA V5 ApplicationFrame
7. CAA V5 DialogEngine
Objectives of CATIA V5 DialogEngine

Main notions
How to define a new interactive command

Copyright DASSAULT SYSTEMES 2000

Table of Contents — Continued

8. CAA V5 Dialog
Framework objectives
Building graphic user interfaces
Retrieving user inputs
The Dialog builder

9. CAAV5 Administration
Packaging
Licensing
Software Prerequisites
Delivering a CAA build Application

Copyright DASSAULT SYSTEMES 2000

Native CATIA V5 Openness Positioning

You will learn what are the different techniques and tools
available in CATIA V5 to customize it and when to use which

one.

= Introduction

= Openness tools

= Some Case studies
= Recommendations

Copyright DASSAULT SYSTEMES 2000

Introduction

Many openness capabilities available in CATIA V5

Standard format import/export (V5R1)
Macros using the Automation APl (V5R1)
Knowledgeware (V5R1)

Interactive User Defined Feature (V5R7)
CAA V5 C++ & Java API (V5R6)

What are these tools provided for ?
When to use what ?

Copyright DASSAULT SYSTEMES 2000 7

Different Levels

Multi-CAx, Multi-PDM, Standard Format
Import/Export

«by conversion» customization

Automation Components, Journaling,

Customize...

VisualBasic, JavaScript/HTML

«interactive» customization

Knowledgeware feo

«reactive, rule-based, by goal» customization

Interactive User Defined Feature

«by composition» customization

Java and C++ Components

«component-based programmation» customization
C -, right DASSAULT SYSTEMES 2000

IF ()
1¥7}

Files of twpe:

Al Files %7

Formulas & Rules Design Table

Openness Tools Highlights

Files of twpe: AN Files [#7)]

0o [0 oo [

Idf *® Idf Custarnize... Start Recording...

Wizualization Filters... IL] Stop Recording

ﬁf [".u[:'gll]_Ij | v
ibrary [*.librarny ; " -
rodel [*.rmodel) Gl MBM
picture [*. picture)

rgb [*.rgh)

zezzion [* zeszion]

shep [*.ztep)

o T S . - | {JI'} -
> Formulas & Rules Design Table

1B Friiners

A = e
.‘ &
L
B e | s
T PR Eaer] R < EATiEE
p— =x_)

Copyright DASSAULT SYSTEMES 2000 9

CATIA V5 Automation API

Automation API to be used in macros written in an interpreted language:
Visual Basic Script or Java Script EE sz Window Help

f Formula...
CATIA Automation: end user view = ' _

_ Macros... Alt+Fa
On th e CA TIA da ta m Odel Customize. . Start Recording...

e I Nt | Zoom.CATScript - Notepad

File Edit Search Help
Lanquage="UBSCRIPT"

Rely on standard languages Sub EThaing)

' Add a cylinder in the current
otherwhise, create it.

resu = InputBox{"Prompt", "Titre
MsgBox resu

On Error Resume Hext

Journaling: interactive programmation Set HyWindou - CATIA.Activeinde

If MyWindow Is Hothing Then
msgbox “No window to zoonm"

VB application

UNIX & WINDOWS NT

Basic Script (Summit)

-ar

2. Generate data

Comm_umcatlor_r w:_th any OLE . . ication _
compliant application (NT) 3. Retrieve information | i

C 1ght DASSAULTIS)YSTEMES ZOP

1. Launch CATIA P b

from CATIA it L ool

CATIA V5 Knowledgeware

A productivity environment for specification reuse:
as simple as formula to corporate knowledge base rules

Imbedded Knowledge

. . that participates t
Fully integrated platform in V5 ¢ 4eoign dofinition

in order to leverage processes

Interactive knowledge capture

through associative and persistent

specification definition and Rule based
- B processes

predefined easy to use services

Driven management and reuse:
from functions, specifications to
components and systems

Allow customization and external

: . Design by goal
sources integration S

Copyright DASSAULT SYSTEMES 2000

Knowledge
Advisor

Rules <3

Checks
Inspector
Behavior

Knowledge |
Expert T
Rules
Checks

Rule Based
Reports

Product |
Engineering =
Optimizer ‘

Optimization goal
Criteria
Solutions

Interactive User Defined Feature

Define interactively new data types
by aggregating existing features

Interactive data definition

Collect existing specifications,
specify inputs and create a «IlUDF»

«IlUDF» to be saved in a CATPart

document and referenced in a catalog

s iin Wl
o WI “H IJ|

Interactive easy reuse

3. Instantiated 48
in context -

Copyright DASSAULT SYSTEMES 2000 R

CAA V5 C++ and Java API

Based on extensions Teamwork Full solf}‘évg;glg%‘(’ﬂggggnt
of standards tools development

e 9 —J

g S
sy Nfstale: KK

& 7. Rational
_Sftr:rﬁ Rose @ ns

Interactive
Development

Methodology and
programming gwdes

Copyright DASSAULT SYSTEMES 2000 13

Tools Collaboration

Call User functions

Define new Automation API
Launch macros

CATIA V5 CAA V5
Automation API C++ & Java API

Generate Knowledge Features

Overload default
user interface

User Defined
Feature

Copyright DASSAULT SYSTEMES 2000 14

Some Case Studies

= Use as is
&= Capture an interactive process
&= Define some new user interface
&= Check corporate rules

= Extend
&= Enrich CATIA V5 data model
= Create or modify data behavior

= Glue
= Glue with external systems

Copyright DASSAULT SYSTEMES 2000

15

Use as is: Capture interactive process

ex: perform in one shot a sequence of operations on DS objects

CATIA V5
Automation API

CAA V5
C++ & Java API

Copyright DASSAULT SYSTEMES 2000

Use as is: Define some new user interface

ex: ask for user parameter inputs in a panel

CATIA V5
Automation API

CAA V5

C++ & Java API

Copyright DASSAULT SYSTEMES 2000

[1 Very simple panels with “InputBox” and
“MsgBox”

[1 More sophisticated panels by defining an
ActiveX in Visual Basic. (NT only)

[1 Associate an icon to a macro and plug it
in the CATIA frame

[] Selection capabilities (V5R6)

[] Sophisticated interactive commands
[J Command grouping in workbench
[] State of the art panels

[] Undo/Redo

17

Use as is: Check corporate rules

==

Knowledge

CAA V5
C++ & Java API

Copyright DASSAULT SYSTEMES 2000

Extend: Enrich CATIA V5 data model

ex: define a new feature to be seen afterwards like any other DS feature

[1 Atomic DS features exist.
User Defmed (1 No code to be written
Feature
CAA V5

C++ & Java API

Copyright DASSAULT SYSTEMES 2000 19

Extension: Create or modify data behavior

ex: extend the behavior of an existing object

CAA V5
C++ & Java API

Copyright DASSAULT SYSTEMES 2000

Glue: Communication with external systems

ex: generate new data in V5 documents or retrieve information

CATIA VS [] CATIA is an OLE Automation server.
Automation API 1 WINDOWS NT only
CAA V5 L] The Backbone proposes an asynchronous
C 3 API communication.
++
Java [1 Encapsulate the underlying technologies

Copyright DASSAULT SYSTEMES 2000 21

Recommendations

= Positioning according to capabilities

= Positioning according to required skills & training

Copyright DASSAULT SYSTEMES 2000

22

Positioning according to capabilities

USE AS IS

Advanced Ul

Automation APl | Simple Ul

Simple

Behavior CAA VS

C++ & Java API
Developer

Advanced

End User Advanced
Behavior

New data
type

UDF/

EXTEND

Copyright DASSAULT SYSTEMES 2000

Positioning according to Required Skills &
Trainings

Skills & Trainings

CATIA V5
Aut ti
u OAHF: on Object
Oriented

Language

CATIA V5 Visual Basic
Knowledgeware
IUDF I
CATIA V5 CATIA V5 CATIA V5 CATIA V5
Basics Basics Basics Basics

IUDF Knowledgeware Automation CAA

Copyright DASSAULT SYSTEMES 2000 AP|

To Sum Up ...

In this lesson you have seen...

« A range of openness tools
Adapted to different targets
From simple to advanced developments
From end-user to professional programmer

« Whatever your needs, you benefit from an
appropriate tool.

Copyright DASSAULT SYSTEMES 2000 25

CAA V5 Development Environment

You will learn about the directory tree structure, the specific tools
developed and plugged in Microsoft Developer Studio, and how to
find information in the CAA V5 Encyclopedia.

& A Component Architecture
- Workspaces and Frameworks

& Compilation Tools
- mkmk

&= Microsoft Developer Studio Integration
& Other Tools

& CAA V5 Encyclopedia

= Programming Rules

Copyright DASSAULT SYSTEMES 2000 2

CAA V5 Development Environment
Objectives

Tools and Methods for an OO programming environment

Support the V5 Architecture

Support large teams of developers working concurrently in
different sites

Help making better quality software in a faster way

Capture and enforce company processes

C «ght DASSAULT SYSTEMES 2000 27

CAA V5 Characteristics

Common development platform for all the Dassault Systemes
product lines
CATIA/ENOVIA / DELMIA

Code written on top of CAA V5 is the same on NT and UNIX

Copyright DASSAULT SYSTEMES 2000 28

Component Application Architecture

CAA V5 can be used to implement new products

Dassault Systémes

Partners

Customers

CATIA V5 the system

j : ‘ Product reusing

CAA V5 components

Copyright DASSAULT SYSTEMES 2000

>

Extended CATIA V5

— =

CAA V5 components

29

CAA V5 Framework

Group of interoperating objects with built-in capabilities
delivered as a complete resource to client applications

Public Interfaces Protected Interfaces]
Available for
Available for every framework every module
of the
framework
Private interfaces @ @ @ @ q—|
Module #1 Module #n
Local Interfaces @ @ @ Local Interfaces @ @ |< |
Available for
O > D LI B —
sre o the module
only

Copyright DASSAULT SYSTEMES 2000 30

CAA V5 Pre-Requisite Workspaces

CATIA & CAA
Workspace

User 3

——

on

Syste

Integration
Workspace

User 1

P T

Syste

Development
Workspace

— o~

User 2 |

Development
Workspace

Prerequisite Frameworks (for build)

Copyright DASSAULT SYSTEMES 2000 ||| Attached Frameworks (for edit/build/delivey)

CAA V5 File Tree

Exportable to external client frameworks

Run Time View Root Workspace Build Time View,

CE s R = T o e —— i

! los l | IFramework1 !

| I :

| | Lo |

| Ly |

| : | |

: | : /Publicinterfaces I

|| /startup Ireffiles Idoc | | |
| r-—-——---—-—-—--—-—

: I : ' IProtectedinterfaces I !

| Icode Iresources : 1 L |

I ' I - I F !
|

: I | : I i IPrlvateInterfaces [u_{l_tl_lfe_nf!t_y_(??_r_ql__' :

| Igraphic ! R | Imakefilemk =~ TULL . :

| 1] Modulet.m . dentityCard.h | /Inputata | |

| Imsgcatalog | : ---------------- S Smmmnmmnan : |

| (- ’_L /CNext . ISwitchTestCases ! I

: | font : : : """"""".‘_'.'_'.'_'.'_'.'_'.' 1 :

|| /command ! | Isrc . Imakefile.mk Local to module '__’_9‘_’_t_9‘_‘_t_3_e_f___’ :

| Lo ' T

| /bin Idictionary : | t 1 Local to framework

: | : [Locallnterfaces Iy,

| | &y

| Ly

| L

| L

| : |

|
|
|
|
Exportable to non external client frameworks :
|
|
|
|

Copyright DASSAULT SYSTEMES 2000 32

Framework Identity Card

The IdentityCard defines the pre-requisite frameworks to

build and use a framework.

One identity card per framework.
If no pre-requisite framework, define an empty IdentityCard.

This file is used by our building tool to limit the header file search to the corresponding
Interfaces directories of the pre-requisite frameworks.

This framework uses only headers defined in
. the Publicinterfaces or Protectedinterfaces

Identltycard'h directory of the System and

ObjectModelerBase frameworks

AddPreregComponent("'System",Protected);
AddPrereqComponent("ObjectModelerBase", Protected);

Copyright DASSAULT SYSTEMES 2000 33

Manage the CAA V5 Tool Level: TCK

The Tool Configuration Key manages several levels
of the CAA V5 RADE tools.

To set up the tck environment:
tck_init

To list the different levels available
tck list

To set up a specific tool level
tck_profile LeveINameYouWantToUse

Copyright DASSAULT SYSTEMES 2000 34

Define your prerequisite workspaces:
mkGetPreq

mkGetPreq -p PrerequisiteWorkspace1

This enables you to define where the prerequisite
resources are located

build time: header files

run time: shared libraries, resource files, ...

This command must be launched in a window where
the CAA V5 environment has been set and the current
directory is your workspace

Copyright DASSAULT SYSTEMES 2000 35

Build your executables: mkmk

A unique DS tool built on top of the standard
compilers that works in the same way on UNIX and
Windows NT:

Compile Fortran, C, C++, IDL, Express, CIRCE, ...
Link-edit

It uses the Imakefile.mk file that must be defined for
every module.

Copyright DASSAULT SYSTEMES 2000 36

mkmk: The Imakefile.mk

Imakefile.mk

BUILT_OBJECT_TYPE=SHARED LIBRARY e Define the module type

Define the build options common to all the OS

OS = COMMON

WIZARD_LINK_MODULES = \ Specific keyword used by the wizards

JSOGROUP JSOFM CATApplicationFrame The continuation character is “\”

LINK_WITH = $(WIZARD_LINK_MODULES) \ Defines the shared libraries that
CATDialogEngine resolve the symbols you use

OS = AIX

Define the build options specific to a given OS if necessary
SYS_INCPATH =

SYS_LIBS = -IXm -IXt -IXmu -IX11 -Im
SYS _LIBPATH = -L/usr/lpp/X11/lib/R5/Motifl.2 -L/usr/lpp/X11/Motifl.2/lib

Copyright DASSAULT SYSTEMES 2000 37

Build with external libraries

Imakefile.mk

Link with external libraries On NT
LOCAL_LDFLAGS = /LIBPATH:"E:\DirectoryWhereTheLibrariesAreStored”
Name of the libraries

SYS_LIBS = LibraryName.lib

Link with include files

LOCAL_CCFLAGS = /I"E:\DirectoryWhereThelncludeFilesAreStored”

Link with external libraries il A

LOCAL_LDFLAGS = -L/MachineName/DirectoryWhereTheLibrariesAreStored

Name of the libraries

SYS_LIBS = LibraryName

Link with include files

LOCAL_CCFLAGS = -I/MachineName/DirectoryWhereThelncludeFilesAreStored

Copyright DASSAULT SYSTEMES 2000 38

Run with external libraries

Modify environment’s variables
»On NT use (Start + Programs + CATIA + Tools + CATIA Environment Editor)

E:\CATIAV5_Rx\intel_a\code\bin\CATIAENV.exe

»O0n UNIX modify the csh file
CATENV/CATIA.V5Rx.B0x.csh

Copyright DASSAULT SYSTEMES 2000

E| Editeur d'Environnement =]

Environnements :

Hom | Tupe [B

D efaultE nvironment User .l

DialogBuilder Usger

Wiarkspace AddlnF’rodS Uszer

wiorkzpace_AffectPropOnSurf Uszer

Wiorkspace_AffectPropOnSurfTemp Uszer

Wwiorkzpace_aAppelPanelD ansCrnd Uszer

Wiorkspace_AppelPanelD ansCrad01 User

Wwiorkzpace_ApplicationFrame Usger

“Workspace Base User ﬂ

Mouveau | M odifier | Supprimer I
‘ariables dEnvironnement :

Nom | Waleur =

Wiorkspace AddDelDansH50
CaTlnstallPath
P NE
CATICPath
C&TCommandPath
CATDictionaryPath
CaATDociew
CATReffilesPath
CaTFontPath
CATGalamyPath
CATGraphicPath
CATMzgCatalogPath
CATFeatureCatalogPath
CATStartupPath
CATReferenceSettingPath
CATUzerSettingPath
CATTemp

CaTCache

CATReport

CATErmarLog

1]

E: \pgk\DvIp\developpement code\Sample Perso'\AddDelDansHSD'\lntel aj E SCATIA W

E:\pgkiDvip\developpement_codehS ample -PersohdddDelD ansH 504intel a\code'\pmdut
E:\pakiDvipideveloppement_codehS ample-PersohdddDell ansHS04ntel_a\codetcamm.
E:\pgkiDvipideveloppement_codehS ample-PersatbddDelD ansH S0%nte]_a\codetdiction
E:\pakiDvlpideveloppement_codeh S ample-PerzohdddDell ansHS04intel_adoc:E:\CATI
E:\pgkiDvlphdeveloppement_codehS ample-PersahdddDelD ansHS04intel_abreffiles E:\CE
E:\pgkiDvlpideveloppement_codeS ample-PerzohdddDell ansH S0Mntel_a\resourcesific
E:\pakiDviphdeveloppement_codehS ample-PersohdddDell ansHS04intel_a\resourcesha.
E:\pgkiDvipideveloppement_codehS ample-PerzohbddDelD ansH 504ntel_a\resources'aqr
E:\pakiDvipideveloppement_codehS ample-PersohdddDell ansHS04intel_aresourcestim
E:\pgkiDvipideveloppement_codehS ample-PersatdddDelD ansHS04inte|_a\resources'fe
E:\pakiDviphdeveloppement_codeS ample-PersotaddD elDansHS Dhintel_ahstartupE:ADy_|

Cw/IMNMTYProfilest\pgk\CAT S ettings

A INMNT Profiles\pgk \CAT Temp

W INMTYProfilest\pgk\CAT Cache

C: 3w/ INMNTYProfilesh\pak \CATReport
Cw/INMTYProfilest\pgk \CAT T empherror.log

| of

Mam: |CATDLLPath

Walewr : [E:\pgk\DvIptdeveloppement_codehS ample-PersotAddDell ansHS Dbintel_ahcodebin E:\CAT 1A VER $hintel_ahcode'bin

Confirmner |

ok

Annuler

About mkmk

Its behavior depends on the current directory:

your workspace directory is the current directory
mkmk —aug - to force all the modules to be rebuilt
with the debug option.

mkmk —a ->to rebuild only what needs to be rebuilt
A module directory is the current directory:

mkmk —ug - to force the corresponding module to
be rebuilt with the debug option.

mkmk - to rebuild only if necessary

To access the mkmk help on line, use mkmk -h.

Copyright DASSAULT SYSTEMES 2000 40

MkmKk Tips

Use the update (-u) option when:

modifying the dependencies (an include file added or
suppressed)

adding or removing a file (.h and .cpp).

modifying the IdentityCard.h and/or the Imakefile.mk

In other cases, do not use the update option. mkmk will

reuse some intermediate files generated before.

Objects
Importedinterfaces
various

Copyright DASSAULT SYSTEMES 2000 M

ExportedByModuleName Preprocessor

Variables

A Windows NT mechanism imposes that shared libraries
declare explicitly what they import and export.

To manage this, we define some pre-processor variables.

MyClass.h

MyModule.h

Variable defined by
‘ mkmk on Windows NT

#include “MyModule.h”

Class ExportedByMyModule MyClass

{

Copyright DASSAULT SYSTEMES 2000

#define ExportedByMyModule _ declspec(dllexport)

t#else

#define ExportedByMyModule _ declspec(dllimport)

#endif
#else
#define ExportedByMyModule
#endif

>
........ Variable defined by mkmk

when building MyModule

Run time tools

mkrtv

copy the application resources (icons, message
files, dictionaries, ...) from the Build time
directories into the Run time directories.

mkrun

run CATIA V5 or any main executable developed
on top of CAA V5

mkrun -c MyProgram

Copyright DASSAULT SYSTEMES 2000 43

Test Tool: mkodt

mkodt

Every framework FW should provide its test framework:
FW.tst

Uses some predefined environment variables
ADL ODT OUT,

ADL ODT _TMP
/Framework1.tst

Contains shells that launches the test programs
[TestModule1.m IFunctionTests
Contains any data required by the shells: models, §

Contains any reference data that can be used by the [TestCases

shells to check what is produced by a test program
/ InputData
ISwitchTestCases
| OutputRef

Copyright DASSAULT SYSTEMES 2000 44

C++ Source Checker: mkCheckSource

mkCheckSource can detect corrupting errors before
dynamic tests. This insures a better way of programming,
reducing development and debug time.

Checked Rules :
= AddRef/ Release
= Callbacks
& Pointer life cycle
& Exceptions
= C++

& Life cycle of some particular objects (Dialog ...)

Copyright DASSAULT SYSTEMES 2000 45

Source Code Manager (1/3)

SCM is a Software Configuration Management System
designed for supporting CAA V5 developments.

Throughout workspaces' features SCM provides a way for
a company to organize and to control software
developments between development departments.

Users work on files on their personal file systems and
interact with each others by commands involving the
whole workspace.

Copyright DASSAULT SYSTEMES 2000 46

Source Code

Copyright DASSAULT SYSTEMES 2000

Manager (2/3)

The process is based upon four main
operations:

= the promotion: it is the delivery of
developments from a workspace to its
parent workspace

& the collect: it is the action of getting in
a workspace what has been delivered by
child workspaces

47

Source Code Manager (3/3)

Copyright DASSAULT SYSTEMES 2000

& the publication: it consists in making
available to other workspaces what was
in the private part of a project
workspace. Available changes are in the
public part and child workspaces can get
them with the synchronization.

& the synchronization: it is the action of
getting in a workspace the last state of
the component managed in this
workspace from the public part of the
parent workspace.

48

Microsoft Developer Studio CAA V5 Add-Ins

All our specific tools have been integrated in Microsoft
Developer Studio V6

Must be installed using the Unicode String option.

*. Damptonf = Micrynoft Vemal Cas s 168 5B et it ks B et e]
3 Erle Ed# Yrw Jreart CASS Werapees Project Bukl Soorce Sonagerer® Joob Wrsdew Nep = = =]
- bl Sl L85 Py T & oMo

r_._a!uv_.-rhrr-_!:ral.-l FFp—— w1 g Lish} el ambwmndd uawet o [R R LA B B |

Lot e &L B = h
W) ek
a i il sheg i s L — "':'EE & -: ruixl
Ths ACFET
P T L TR
ah 5 Fes E kil pu af. |
i 1
-
S 10|] e | [ET| r_rl
ErE— e e

SINT e atws: Datellpdate b 0020 T0TI-T8 S1.9T
|
o Coussrd dora . reters coda s 0

cureremd code: E

|-l-h-.-u;|,:-.|.|:.ln.i.lll-l:\,!-illhlll-:[!H-r-',.-‘_.' | l'| |
Faudr L ed B

Copyright DASSAULT SYSTEMES 2000 49

£ el

CAA V5 wizards in Ms Developer Studio

. Panel H= 3
Wizards to generate code ~H{Framedo) ~Franc00f
z 3 [:>el002 0.000000 LabelO05™ CheckButtand06
corresponding to generic i - -
taSks' O Cancel Help
New CAA V5 Workspace
New Framework
New Module
New Command code uitor jmbey |
PR e
I + CAAYE Waorkspace Pro-— build L L) .
New Interface ‘”Si; = ’ E k] i
New implementation = - E %;g;;ﬂ; s
Besource... Ctrl+R 5 [Gtk ks s
Rggﬂur‘ce EDP'}-'“. I Cadfdd Ladrisises po
CAA WD Class..,
Component..,
Interface..
Plugin...
Event Listenar..,
Test-Case... s
Lesign Feature Catalog
CATIA Resource v oK] Cawd |

Copyright DASSAULT SYSTEMES 2000 0

CAA V5 Object Browser

To know which component
implements which interface

Copyright DASSAULT SYSTEMES 2000

| CAAVS Object Browser

Interfaces I Types I Frameworksl Headersl

CATI2DConstraintAnalpsiz
CATI2DConstraintF actony
CATI2DCztDiagnostic:
CATIZDCstPaint
CATIZDCurye
CATIZDCustomH andle
CATI2DCustomH andlebd anager
CATIZDDetail
CATI2DDetailFactaory
CATI2DDetailStartUp
CATI2DDirection
CATI2DDitto

CATI2DEllipse

CATI2DE quivalentG eometry
i

- BT 2DCircle
- BT 2DCstPoint
- 2DCePoint_T angent
B 2DElipse
-8 2DHyperbola
B8 2DLine
.. ™18 2DParabola
-8 2DPoint
.8 205 plineCurve
-8 2DUnspec
-8 CanB sk CantreDfGravity
BT LR ek lement
-8 CAAB ckLine
-8 CadBskPoint
- CasB sk FootElement

3} CAAVS Object Browser

Interfaces Types |Flamew0lks| Headelsl

v ™% Box

M= BrokenLines

B2 BucklingSet

M= CALRasicS ketch

M8 CasBsk

B8 CasBskCentreOfGravity
M8 CaABskE lement

M8 CasBskline
IbC&AB skE dutdodel
o= ChdlBskElement
=0 CAalBskLine

=0 CATIZDGeovisu
= CAaTlVizu

- ™18 CAABskPaint

-™18 CAARskRootE lement
- ™18 CAARskWorkshop

[™18 CAT1001_1

[™18 CAT1001_2

[™18 CAT1001_3

[+-™18 CAT2DDimension
=™ CATZ2DGrd

I::I----Ij CAT2DH andlet anager
[

£

E:

E:

2

2

£

[

0 ™18 CAT2DMarker

718 CAT20MarkerCommisg
718 CAT2DMovedgent

o8 CATZDRep

-8 CAT20Yiewer

(- = CAT2D0Wiewpaint

7m0 CAT2DWisuHandle

f-®8 CATIDAnnotationT ext5GP

13

e |

Find

51

Mapping between commands and
MsDev Add-Ins

m kGetPreq /| mkCo pyPreq Define Prerequisite Frameworks. ..

Create/lIpdate Runtime Wiew. .
 ’ Céd W5 Object Browser...
mkrtv Check Source Files...

nix Connectian. ..

kaheCksource Build Tools Window Help

mk k...
£ Compile CAAEBskBuildOnCentreOfGravity.cpp
Build EMext.exe F¥
Rebuild All
Batch Build...
Clean

| Casvh Workspace Project Build Sourc
> Locate Prerequizsite Workspaces. ..

mkmk

m kOdt Start Debug

Bebugger Remate Cannectian..,

Execute CAABskDocument.edu.exe Ctrl+F5&
mkrun Replay Test-Cases..

Tools Window Help

Open Command Window

Open Runtime Window

Funtime Environment Yariokles..,
Open Command Log..,

Execute a Lser Command...
Copyright DASSAULT SYSTEMES 2000 52

Mapping between commands and
MsDev Add-Ins

Synchronize

Promote

Collect

Publish

/

Copyright DASSAULT SYSTEMES 2000

Software Configuration

Management

Source Managerment Toolz: Window Help

> | Synchronize. ..

Check-Out...

Fromote. ..

Simulate Promatiar

Undo Lazt Checl-Out. .
Check-in Fileg in Databasze
Attach Frameworks/Modules. .
Detach Frameworks/Modules. ..
Declare File in Databaze. .

Declare Directony in Databaze. .

Rallback Filez fram D atabaze Yersion...

Tearm Workzpace

53

Caollect. .
Fublish...

MSDev Add-Ins: Hints and Tips (1/3)

To be able to see any modification done directly in NT
Explorer (copied, moved or deleted files) in MSDev,

Use command Project+Choose/Refresh CAA V5 Project...

Project Build Tools Window Help
 Cheose/Refresh CAA V5 Project.. >

Set ACTive T oeet L4
Add Tao Praject »
Mew Framework...

Mew dodule..,

Copy Framework..,

Copyright DASSAULT SYSTEMES 2000 54

MSDev Add-Ins: Hints and Tips (2/3)

Runtime Environment m

B azic Environment Y ariables:

" ariable | Walue j
T b b I _MEmkOS_JLAvA client
ADL_ODT_IM 1
O e a e to see .your BLD_HOST_OS intel_a
BOOKSHELF CASOLLIBNBOOK o ifarWMABIMAER _LIS
trace sta tem ents th e CATDefaultE reviranmment Workspace_BazicSketcher
. 5 CirceROOT_PATH C:A%ProgramssDASSAL ~TACAAT oals\ T OEMCirce
CLASSPATH CCASOLLIEY avahdbZjava, zip:C NS OLLIB Y ava'
enVIronment Var'able COMPUTERMAME ab.:,utu v a2 . et
ComSpec CAWAMM T hapstem32emd. exe

CNEXTOUTPUT has to be CHERR NN,
set to console in J | ’
- Ilzer Added Y aniables:
TOOIs+Run t’me W ariable | Walue
Environment Variables

Usger W ariables: ||:N EXTOUTPUT

Walue: |consold

Set Delete |

(] | Cancel |

Copyright DASSAULT SYSTEMES 2000 55

MSDev Add-Ins: Hints and Tips (3/3)

To rebuild a module and if you don’t need the update
option, use the keyboard shortcut F7.

To export a workspace (just the source code) get rid
of all the intermediate files generated by mkmk:

go to Tools + Open Command Window and key
mkRemoveDo -a

[CtrI-Q] to swap between .h and .cpp files

[Ctri-T] to open the .h file corresponding to the
keyword under the cursor

[CtrI-F1] for APl documentation

Copyright DASSAULT SYSTEMES 2000 56

Enable porting on UNIX from Visual C++

If you need to port your applications on UNIX, you
should run again the CATVBTSetup executable:

C:\Program Files\Dassault Systemes\T07\intel_a\code\bin

Components to Install: Log]Settings] Documentation Tool access l
In the Tool access [=v
IV Cad 5 - CodeGenerator tok_init Profile Path

tab page a C t’ Va te g V 'I':I nr |C:4Program Files\D assault SystemeshT07hintel_aheodsteammandstck _init bat
, A8 - Uevelopel a2 IUdd 20 [}

¥ Cad s - Feature Builder

the remOte access AR e Hanaoe W Activate Remote Access
an d in form Wh ere Location of RADE tools on UNES [up to and including platform]
|.-"LISI.-"D aaaaa [tSystemes/TO7 falx_a
the C A A v5 TO (0] Is Uik tck_init Profile Fath

- t II d |.n"usr.n"D aaaaa IS pztemes T 07 /aiv_a/code/command.tok_init
are instiaiied on

UNIX

Irstall | Claze

Copyright DASSAULT SYSTEMES 2000 57

Activate the Porting on UNIX

When opening a workspace, you can ask for building
on UNIX by informing Visual C++ on which UNIX
machine, with which user and in which directory the

operations will be performed.
Open CAA VS Workspoes |

upen Open with: IMkmk j
Later On Wh enever wnrksPace Wwiork zpace Directony:
a file is gen era ted (=1 ITE:H'lflraini:gHBasicSketcher _l
on NT, it is copied fvare o8 =]
meanwhile on UNIX B
W Build On UNIX
M [Hozt M= Login ;
Ial:uigu:ls_l,l chd

Diirectony for build:
I.-"u.-"users;"ctd.-"M_l,qu:urkspaces

()4 I Cancel

Copyright DASSAULT SYSTEMES 2000 o

Porting on UNIX

From Visual C++, then

you can define the pre-requisite workspaces
you can build

you can update the run time view

—Mode

% Access prerequisites from their origin location
| Copy prerequisites from angin eeation o curent wokspace

| Capy prerequisites fram origin lazation e [oeal diectony and ascess them there

Lozal directans

r— Origin for prerequisite Frameworks

Prerequizite framewarks are access or copied from following workspaces:

Add ... |
Eemave |

jcd
Iid
v Specifiy other options |

]9 I Cancel |

59

Other Tools used in the CAA V5 context

Rational Purify

A tool to detect any memory leak and to be
used with mkodt

Rational Pure Coverage

A tool to check the percentage of the code
really tested and to be used with mkodt

Copyright DASSAULT SYSTEMES 2000 60

CAA V5 Encyclopedia Home Page

CAA VS Encyclopedia
DASSAULT

SYSTEMES

Applications

Tesseiiion

 Geametry

Architecture

Copyright DASSAULT SYSTEMES 2000

61

CAA V5 C++ Objects Documentation

Copyright DASSAULT SYSTEMES 2000

Interface GeometricObjects. CATNurbsCurve

System. IUnknown
|
+——-System. Ilispatch
|
+——-Systew. CATEaseUnknown
|
+-——GeometricObhiects. CATICGHOLjeot
|
F-——-GeometricObiects. CATGeOmeLE Y
|
+-———GeometricObiects. CATCUrve
|
+-——CATHurbsCurwve

Usage: an nnplementation of this interface is supplied and vou must use it as is. You should not reimplement
it.

intetface CATNwbsCwve
Interface representing a Nurbs cumve.

A CATNurbsCurve is created by the CreateNurbscurve methed of the CATGeoFactory interface and deleted with
the Remowe method. Ttis defined with:

CATEnotVector EnotVector The knot vector for the polynomial basis definition
CATWatSetOfPomts Vertices The set of control points

CATBoolean IzRational TRUE if the murbs i3 rational, FALSE otherwise
double[] Weights The array of weights if IsRational
See also:

CATEnotVector

62

CAA V5 Programmer's Guide

All documentations about a domain

Technical Articles

Use Cases

Quick references
DASSAULT
SYSTEMES

Application Frame
version: 1 [lan 2000]

Technical Articles

Cocurment history

Technical Articles | Use Cases | Quick Reference

Application Frame
All articles about custornizing the application frame

-

Application Frame Overyview The basics of interactivity
Making Your Dialog Comrmand &vailable How to integrate your dialog command into the CATIA application frame

[Too]
Use Cases
Creating a Workshop Exposing and organizing the commands dedicated to a document
Creating a Waorkhench Exposing and organizing commands dedicated to a given task
Creating an Add-in Customizing a workshop or a warkbench
Creating & Docurnent's Window Enabling your own docurments to be displayved in the CATIA main windouw
Managing Transitions hetween Waorkbhenches Making a process-driven user interface
Editing Ohjects Making your ohjects editable
Creating Standard Command Headers Exposing your commands
Creating Customized Command Headers Exposing your commands and managing their availability =
Using Cameras Creating a single command seen as several end user commands

[Top]
ApplicationFrame Reference Interface and class reference for application frame objects

[Top] =

& [[BT Paste de traval 4

Copyright DASSAULT SYSTEMES 2000

63

CAA V5 Programmer's Guide

Technical articles

In depth paper

Less than 10 pages

Hyper linked

Copyright DASSAULT SYSTEMES 2000

Application Frame Overview :I
DASSAULT The basics of interactivity

SYSTEMES

Application Frame Programming
Version: 1 [Jan 2000]

Cocument history

Abstract

This article explains which paradigms CMext uses to show objects and let end users play with them,

The Anatomy of a Typical CNext Application Window
. The Application Window

The Document Window

Workshops and Workbenches

Interactive Cornmands and Command Headers

How Commands Are Presented to the End User

. Transitions between Workbenches

. Objects Providing the Interactive Behavior

. In Short.

The anatomy of a Typical CNext Application Window

The CHNext application window is the host for all CMext documents. CATIA, as an MDI (Multiple Document Interface)
application, can display several document windows at the same time as child windows of its application window, one
docurnent window, and thus one docurment, being active at the same time. Have a look at the screen shot below,

EEXIXER] Mestandard menbor [The appiication vindow
Stat File Edit Miew Bl Tool: Window Help
IP—E’M _____ = = ’ ;I

CAA V5 Programmer's Guide

Use Cases

CAA V5 Code in Action

Step by Step

Each step detailed and commented
Delivered with fully operational source code
Made to be copied/pasted into customer code

|3

described in separate sections.

f#include "CAlLfrGeometrylilks_h'"

finclude "CATICAMAAfrCeometryllksConfiguraticon.h"
#include "CAATAfrGeometryilkzsiddin. h"

#include "CATCommandHeader h" f/ See Creating the Command Headers
MacDeclareHeader (CALRfrGeometryilzsHeader) ;
finclude "CAAAfrDumpCommarndHeader_ k"

fiinclude <CATCreateWorkshop.h=
CATImplementClas=s (CAALfrEeometrylilks, Implementation, CATBaselnknowm,
ginclude =<TIE_CATIWorkshop.h>

TIE_CATIWorkshop (CARLfrGecmetrylilks) ;

CAALfrCeometrylks: : CAALfrCaonetrylilk=() {}
CAdbfrCeometryilks: : ~CALAfrCaometryilk=s({) {}

woid CRAAfrGeometryllks: :CreateComnmands i)

CATnull) ;

2, Create the CatafrGeometryWwhks.cpp file. The file skeleton is shown below. The implementation of each method is

4]
Copyright DASSAULT STSI1CENIES ZUUU

CAA V5 Programming Rules

Programming Rules
Naming convention

C++ coding rules

Java coding rules
Architecture rules

User Interface look and feel

Available in the encyclopedia

Copyright DASSAULT SYSTEMES 2000 66

CAA V5 Naming Convention

Naming conventions
To avoid name collisions
To make things clearer for its developers

Names are constituted by English names, each one
starting with an uppercase.

Three letters alias for product name.

CAT/VPM /ENOV /DNB reserved for DS product lines

Three letters alias for each framework.

CATMoldDesignFeature (framework)

CATMIdComponent.m (module)

CATMIdEjectorimpl.cpp/.h (class)
Copyright DASSAULT SYSTEMES 2000 67

CAA V5 C++ Programming Rules

Prefer class forward declaration to #include

Avoid multiple inheritance

Use variable naming convention

Argument prefix: i for input, o for output

Variable prefix:
p pointer
pp pointer on pointer
sp smart pointer
pi pointer on interface
a array

Do not use friend class

Copyright DASSAULT SYSTEMES 2000

68

To Sum Up ...

In this lesson you have seen...

« The CAA V5 directory tree structure

« The specific tools developed on top of the
standard compilers to speed up the development

« The integration of these specific tools in Microsoft
Developer Studio as Addins.

« How we develop on Windows NT and how we port
on UNIX

Copyright DASSAULT SYSTEMES 2000 69

CAA V5 ObjectModeler

In this lesson you will learn the CAA V5 OO infrastructure.

® Why a New Object Modeler?

@ The Interface / Implementation Pattern

@ Between Interfaces and implementations
@ Object Life Cycle Management

9 Extension Mechanism

@ Late Typing

Copyright DASSAULT SYSTEMES 2000

70

Why a new Object Modeler?

You will learn why the C++ object model alone does not suit our needs.

&= C++ as a Starting Point
&= What’s wrong with C++?

Copyright DASSAULT SYSTEMES 2000 71

C++ as a Starting Point

Contour

Color

Virtual Surface() =0

l

Square

Surface()
{S**2}

S

Circle

Surface()
{pi*R**2}

R

Copyright DASSAULT SYSTEMES 2000

Encapsulation
Hiding implementation details
Changing private part without client impact

Inheritance
Reusing implementation
Extending types

Polymorphism
Genericity on client side
Specialization of provider side

72

What’s wrong with C++ ?

Encapsulation could be better
Compilation link between object and its client
even if only a private member changes

Contour

Virtual Surface() =0
Color

o

Contour

Virtual Surface() =0
Red, Green, Blue

Copyright DASSAULT SYSTEMES 2000

73

What’s wrong with C++ ?

Not enough run time flexibility
Cannot instanciate classes by name

void* myOhi = new(iargv[1])

Needed for
Adding new types to the system...
... and letting « old » system instanciate them

Copyright DASSAULT SYSTEMES 2000

74

What’s wrong with C++ ?

No support for «schizophrenic» objects

In large systems, objects have more than one type. These
types are needed or useless according to the context.
Multiple inheritance is not a solution

—0

—$ o Persistent
= Displayable
Surfacic

Copyright DASSAULT SYSTEMES 2000 75

What’s wrong with C++ ?

Extension only though inheritance

Point

XY

|

DisplayPoint

How to organize inheritance trees?
What if extensions added later?
What about code modularity?

Point

Point

XY L

XY i

PersistentPoint

DisplayPoint

PersistentPoint

Save()

Display()

Display()

Save()

Copyright DASSAULT SYSTEMES 2000

A

DisplayPoint

A

Display()

PersistentPoint

Save()

76

The Interface / Implementation Pattern

You will learn the Interface handling, shielding any client application from
implementation details
= Interface / Implementation Pattern
& Interface
& Definition
= Using and retrieving Interfaces
& Coding an Interface
&= Implementation
& Definition
&= Coding an Implementation
= Implementation Inheritance
= Factory
& Definition

Copyright DASSAULT SYSTEMES 2000 77

The Interface / Implementation Pattern

Client and Implementation separation is achieved by the
mean of interfaces.

Interface shields the client object from the
implementation details.

. . <<uses>> <<implements>> .
Client Object - =-=---- > Interface [&— Implementation

Alternative notation :

Client Object - — — - ->O— Implementation

Interface

Copyright DASSAULT SYSTEMES 2000 78

Interface

An interface is an abstract object with a set of pure virtual
methods that defines a behavior that objects are subject to
support.

An interface does not know which objects implement it.

An interface sets a contract between a client and provider’s
code

Function prototypes
Design intent

All interfaces inherit from IlUnknown / CATBaseUnknown

Copyright DASSAULT SYSTEMES 2000 79

Behavior or Abstract Data Type

A common behavior
shared by many objects

An abstract data type
implemented by many
objects

Copyright DASSAULT SYSTEMES 2000

Interference

checking
interface

Line
Interface

Solid
Surface
I:I Interfaces
I:I Implementations
CATIA V4
Line
CATIA V4
Pipe
CATIA V5
Line
80

Interface Inheritance

Interfaces can inherit from each other

Surface ——(QO [IPersistent
—O IDisplay

IGraphicPropertyAccess

Surface « OM »

—O IGraphicPropertyEdit

Copyright DASSAULT SYSTEMES 2000 81

Using Interfaces

How an application uses it

1 An interface #include "CATITransform.h"
[...]
CATITransform CATITransform * transforminterface;
/Il [...Here we get the instance of the interface...]
virtual Translate()=0 if (transforminterface)
virtual Rotate()=0 {
virtual Move()=0

CATVector3f translVector(10., 10., 10.);

e -p- transforminterface->Translate (translVector);
: cout << "Element translated" << endl;

}

Translate service is asked to the interface, not to the implementation.

Application uses interfaces instead of implementation objects.
The application remains isolated from implementation.

... but how to get an interface ?

Copyright DASSAULT SYSTEMES 2000 82

Getting an Interface from an
Implementation

[...]
/I Query if point implementation can provide a CATITransform interface
CATITransform * transforminterface = NULL;
HRESULT rc = pointimpl->Queryinterface(lID_CATITransform,
(void**)& transforminterface);
/Il Use returned interface to manipulate point :
if SUCCEEDED (rc) :
{
transforminterface ->Translate(...);
cout << "Point translated" << end];

}

L Queryinterface returns as its second argument an instance of CATITransform if
pointlmpl implementation instance adheres to it, NULL otherwise.

However, clients should not deal with implementations to avoid coupling.
This capability is offered for special purposes like factory programming.

Copyright DASSAULT SYSTEMES 2000 83

Getting an Interface from another Interface

[...]
I/l Query if CATIVisu interface is supported in addition to CATITransform

HRESULT rc = transforminterface->Queryinterface(lID_CATIVisu,
(void**)& visulnterface);
// Use returned interface to manipulate point
if SUCCEEDED (rc)
{
visulnterface->Draw(...);
cout << "Point displayed" << endl;

}
[.]

Queryinterface also works with an existing interface instance as
input, i.e. an interface instance can be queried against adherence to
another interface just as the implementation object it stands for.

Copyright DASSAULT SYSTEMES 2000 84

Interface at work

Macros to define

CATISample.h

[...]
#include “CATBaseUnknown.h”

extern I[ID 1ID_CATISample;
class CATISample: public

3
]

CATBaseUnknown
{
CATDecIareInterface’ 4.
public:
virtual ... Method1(...)=0;
virtual ... Method2(...)=0;

Copyright DASSAULT SYSTEMES 2000

a new interface class

CATISample.cpp

[...]
#include “CATISample.h”

CATIimplementinterface(CATISample,
CATBaseUnknown);

]

=

Interface inheritance - .

85

Interface at work : the GUID

The Global Unique Identifier (GUID) of an Interface is stored
from V5R6 in a specific module :
Module’s default name generated by CAA wizard :

MyFrameworkinterfacesUUID.m

Name of the file :

CA TISampl e.cpp CATISample.cpp

#include “IlUnknown.h”
extern "C" const IID IID_CATISample = { 0x32bbc9aa, 0x0254, 0x11d5, { 0x85, 0x08, 0x00, 0x02,

0xb3, 0x06, 0x11, 0x71} };

To compute a GUID
on UNIX: uuid_gen -c
on NT: uuidgen -s

The MyFrameworkinterfacesUUID module has to be included
in the Imakefile.mk files in other Frameworks for

accessing CATISample interface

Copyright DASSAULT SYSTEMES 2000 86

Implementation

An implementation is an object that defines a specific
way to fulfill the contract set by an interface.

An implementation has to explicitly state which
interface(s) it adheres to.

An implementation provides code for all the
abstract methods defined in the interfaces it
adheres fto.

An implementation may adhere to many interfaces.

The client application deals with the
implementation only through the interface.

-

Client code Interface Implementation

Copyright DASSAULT SYSTEMES 2000 87

Implementation at work

ImplSample.h

Macros for an implementation class

ImplSample.cpp

[...]
#include “CATBaseUnknown.h”

class ImplSample: public
CATBaseUnknown

{
CATDeclareClass;

public:
ImplSample() ;
~ImplSample() ;

/I CATISample adhesion
. Methodi(...) ;
. Method2(...) ;

/I Other methods

[.]
b

]

#include “ImplSample.h”

CATIimplementClass (ImplSample,
Implementation,
CATBaseUnknown,
CATNull)

[...]
/I CATISample adhesion

[...]
. ImplSample::Method1() { ... }

. ImplSample::Method2() { ... }

/I Other methods
[...]

ImplSample

Copyright DASSAULT SYSTEMES 2000

—O0 CATISample

88

Implementation at work

Macros for an implementation class with inheritance

ImplSampleB.h

ImplSampleB.cpp

[...]
#include “CATBaseUnknown.h”

class ImplSampleB: public ImplSample

{
CATDeclareClass;

public:
ImplSampleB() ;
~ImplSampleB() ;

/I CATISample adhesion
. Methodi(...) ;
. Method2(...) ;

/I Other methods

[..]
b

[...]
#include “ImplSampleB.h”

CATImplementClass (ImplSampleB,
Implementation,
ImplSample,

CATNull)

[...]
/[CATISample adhesion

[...]
. ImplSample::Method1() { ... }

. ImplSample::Method2() { ... }

/I Other methods
[...]

Copyright DASSAULT SYSTEMES 2000

89

The CATImplementClass Macro

CATImplementClass (<this ClassName>,

<its OM type>,
<its OM inheritance | CATBaseUnknown>,
<what it extends | CATNull)

3 main types:

* Implementation
 CodeExtension
» DataExtension

Copyright DASSAULT SYSTEMES 2000

90

Implementation Inheritance

CATISample ImplSample

A

CATISample1 ImplSample1 ImplSample2

ImplSample1 adheres to CATISample1 and
to CATISample by inheritance from
ImplSample whereas ImplSample2 adheres
only to CATISample.

Copyright DASSAULT SYSTEMES 2000

Factory

A factory is a special object that contains
methods dedicated to object creation.

The factory creates an implementation object and
returns an interface object on it.

The factory minimizes the coupling since the client
application doesn’t manipulate any implementation

instance.

The object creation is centralized which enables a
better object management.

Copyright DASSAULT SYSTEMES 2000 92

Factory at work within a client application

Interfaces on factory are usually retrieved through a Querylnterface
on a high level object (documents, containers...).

[.]

Il Retrieve the Factory
CATICatalogFactory *myFactory = ...;
CATICatalog *myCatalog = myFactory->CreateCatalog(“CatalogA”);

]

The CreateCatalog method creates an implementation
object and return an interface on it to the client application.

Copyright DASSAULT SYSTEMES 2000 93

Between Interface and implementation

You will learn how the link between interface and implementation is done
through TIE objects.

& TIE Definition

&= Two types of TIE
= Standard TIE
& Chained TIE

& TIE Generation

&= TIE at work

Copyright DASSAULT SYSTEMES 2000 94

TIE Definition

A TIE is the object that links
the interface and the implementation.

Every request to an interface method is redirected to
the corresponding implementation method through

the TIE.
CAAIPoint |C Pointimpl
A pointer on an interface is in N\ 7
fact a pointer on a TIE object.
piPoint — o
TIE_CAAIPoint |

Copyright DASSAULT SYSTEMES 2000 95

Standard and Chained TIE

Standard TIE

When a pointer to an interface is
required, a new TIE is retrieved even if
there is already one for the underlying
implementation object.

Pointimpl

iPoint1

.
.
.
. u
.
. u
.
.
.
o*
o

TIE_CAAIPoint

piPoint2

TIE_CAAIPoint |

Copyright DASSAULT SYSTEMES 2000

Chained TIE

When a pointer to an interface is

required, an existing one is retrieved

if possible.
* Better memory usage
» Slower query interface

piPoint1

N

/

piPoint2

TIE_CAAIPoint

96

LPointlm pl

.
.
.
. u
.
. .
.
.
.
o*
o

TIE Generation

If the interface is defined in C++, the TIE header file
will be generated if you create a file

TIE_CATIxxx.tsrc that just includes the interface
header file CATIxxx.h.

» TIE _CATIxxx.tsrc is generated by a wizard under Visual Studio

<FWInterfaces>/FWItfCPP.m/CATIPoint.tsrc

/[Code Generated by the CAA Wizard

/[This source file insures the regeneration of the tie TIE_CAAIPoint.h
#include "CAAIPoint.h"

<FWinterfaces>/ProtectedGenerated/intel_a/TIE_CATIPoint.h

Copyright DASSAULT SYSTEMES 2000 97

TIE at work

TIE at work

The TIE xxx macro is
used for a standard TIE.

The TIEchain xxx
macro is used for a
chained TIE.

Copyright DASSAULT SYSTEMES 2000

ImplSample.cpp

[..]

#include “ImplSample.h”

CATImplementClass (ImplSample,
Implementation,
CATBaseUnknown,
CATNull)

[...]

/I CATISample adhesion

#include “TIE_CATISample.h”

TIE_CATISample(ImplSample);

.. ImplSample::Method1(...) { ... }
.. ImplSample::Method2(...) { ... }

/I Other methods
[...]

Statement defining ImplSample
adhesion to CATISample interface

using a standard TIE.
98

Object Life Cycle Management

You will learn how to manage the life cycle of interfaces and implementations
through the Reference counting and smart pointer techniques.

&= Managing the Object Life Cycle
= Reference Counting

& Theory

= Examples

= Golden Rules
&= Smart Pointers

& Theory

= Recommendation

&= Do and do not

Copyright DASSAULT SYSTEMES 2000 99

Managing the Object Life Cycle

- CNext Object Modeler rules

= Implementation should be manipulated by
applications only through interfaces.

= An implementation can only be deleted when
its last pointing interface is deleted.

= The CNext ObjectModeler deletes automatically
implementation.

Who should delete objects and how ?

Copyright DASSAULT SYSTEMES 2000 100

Managing the Interface Life Cycle

Many client objects can
hold a reference on the
same interface at the cATIEnsiom
same time. delete T;

AnotherClass

One client object usually CATITransforme T:
holds more than one
reference to an
implementation at a time

~ If one of these clients
decides to delete the Translate
interface through its
reference, what happens
to others?

AClass

T->Translate();

Boom

CATITransform

ObjectModeler offers two mechanisms that
secure the existence of an interface used by objects.

Copyright DASSAULT SYSTEMES 2000 101

Reference Counting

Interface offers special methods for locking
itself from deletion by others

A client of an interface increments the reference
count on the interface while it needs it.

A client decrements the reference count when
the interface is no more needed.

The removal of the last reference causes the
deletion of the interface by ObjectModeler.

Copyright DASSAULT SYSTEMES 2000 102

Reference Counting at work

... Querylinterface does an AddRef() to secure
the interface pointer before returning it to caller.

[.] :
CATIVisu* visultf = NULL: v

hr = persistentltf->Querylnterface(IID_CATIVisu, (void**)&visultf) ;
persistentltf->Release(); // Done with old interface

visultf->Draw(...) ;

visultf->Release() ; // Done with last interface

]

Remark : a pointer copy does not increase the reference count, we must call AddRef()

Copyright DASSAULT SYSTEMES 2000 103

Factory and Reference Counting

CAAIPoint *piPoint = factory->CreatePoint();

L> Pointimpl *pPointimpl = new Pointimpl();
pPointimpl->Queryinterface(IID_CAAIPoint, (void**)&piPoint);
pPointimpl->Release();

(return piPoint;

piPoint-> Queryinterface(IID_CATIMove, (void**)&piMove);

piPoint->Release();

piPoint —

piMove->Release(); Pointlpapl

1+210

piMove —>

Copyright DASSAULT SYSTEMES 2000 104

Reference Counting: Golden Rules

Methods returning a pointer on interface (ex: Ql,
factory) should always AddRef() it prior to
returning

Clients receiving such a pointer should always

Release() it after usage

o Tip: write the Release() code just after the function call that created the
interface pointer and « push » it with usage code

» Tip: when using QI(), you usually can Release() the old interface after
getting the new one

Avoid passing interface pointers around
» Ifforced to do so, carefully AddRef() them

Copyright DASSAULT SYSTEMES 2000 105

Reference Counting: Golden Rules

Adopt a consistent naming scheme

* Manipulating the same object through many different interface pointer
quickly gets confusing

CATINnitO—
CATInit* pilnitOnDoc

CATIPersistent* piPersitentonDoc ~ CATIPersistentO—— Document
CATIDocAlias* piDocAliasOnDoc CATIDocAliasO

Copyright DASSAULT SYSTEMES 2000 106

Smart Pointers (also called Handlers)

A smart pointer is a class associated to an interface, that
behaves like an interface pointer, with additional automatic
reference counting

Smart pointers for interface CATIxxx are of type
CATIxxx var

Being objects, they manage reference counting
through code in destructor, constructor,
assignment operator, etc.

Copyright DASSAULT SYSTEMES 2000 107

Smart Pointers Arithmetic

CATIVisu_var aCATIVisu ;
CATITransform_var aCATITransfor ;
Operator Earmple Wleaning
->

aCATIVisu->Draw()

Dereference. Access a public member of the interface. It makes
the usage of interface very similar to a regular C++ pointer on

implementation. Remark: do not use the "." operator with
handlers.

aCATIVisu = aCATITransfor

Assignment. Make aCATIVisu refer to the same implementation
as aCATITransfor.

Since those handlers are not of the same type, it manages a
downcast if left value is a subtype of right value. If not, it runs a
Querylnterface on left value. Therefore the result can be a NULL
handler.

() aCATIVisu(CATITransfor)

Copy Construction. Handlers preferred way of performing a
Querylnterface(). Result can therefore be a null_var handler.

if (@CATIVisu==aCATITransfor)

IsEqual. Test if two interface instances are dealing with the same
implementation. Thanks to NULL_var which defines NULL handler
value.

if (@CATIVisul=aCATITransfor)

IsDifferent. Test if two interface instances are dealing with
different implementations.

if 'aCATIVisu)

IsNull. Test if an interface instance is actually bound to an
Implementation.

Copyright DASSAULT SYSTEMES 2000

108

Smart Pointers or AddRef/Release?

 Using only Smart Pointers is not possible
For example Queryinterface() automatically increments the reference count.

Mixing the two can be explosive

» Memory leaks
« Core dumps

We recommend to either:

« Stick 100% to Reference Counting
— Heavier to code, but consistent

 Use reference counting at function boundaries (passing interfaces as
arguments) and smart pointers within function’s scope

— Code a bit simpler,
— But you need to manage the mix

Copyright DASSAULT SYSTEMES 2000 109

Do and Do Not

Considering the method
CATIVisu* Getlvisu();

Don’t do

{
CATIPersistent_var spPersiOnX;

spPersiOnX = GetlVisu();
spPersiOnX ->Release();

}

In that case the Release applies
to the CATIPersistent interface
not to the CATIVisu interface.

Copyright DASSAULT SYSTEMES 2000

Instead Do

{
CATIPersistent_var spPersiOnX;

CATIVisu *pVisuOnX = GetlVisu();
spPersiOnX = pVisuOnX;
pVisuOnX ->Release();

}

110

Do and Do Not

Considering the method
CATIVisu_var GetParentlvisu();

Don’t do @

{
CATIVisu_var spVisuOnX;

spVisuOnX = GetParentlVisu();
spVisuOnX ->Release();

}

In that case the return value is a
smart pointer that increments the
reference count upon creation
and decrements it upon deletion.

Copyright DASSAULT SYSTEMES 2000

Instead Do

{

}

CATIVisu_var spVisuOnX;
spVisuOnX = GetParentlVisu();

111

Extension Mechanism

You will learn how to provide existing objects with new behaviors

&= Extension

&= Extension Example
& Dictionary

= Extension at work
= Extension Types

Copyright DASSAULT SYSTEMES 2000 112

Extension

An extension is an object that adds new capabilities to an
existing implementation object.

An extension implements interfaces to create a
component

Component = Base + Extension + Interfaces

An extension can rely on capabilities exposed by its
base implementation or other extensions

Copyright DASSAULT SYSTEMES 2000 113

Extension Example

As delivered by DS

ImplA

ImpIB

CATISample1

CATISample1

Copyright DASSAULT SYSTEMES 2000

As modified by customer

ImplA

ImplB

CATISample1

CATISample1

ExtB

CATISample2

114

Dictionary

A dictionary is required to locate all other interfaces bound
to a given implementation or its extensions.

ImplSample CATISample
Usually one dictionary per framework
...\CNext\code\dictionary
MyAppli.dico \
ImplSample CATISample liblmplSample
ImplSample CATISample2 libExtSample
& . ”-
Component

Interface it adheres to
directly, through its
extensions or by inheritance

Copyright DASSAULT SYSTEMES 2000

Library that contains the actual
code for this given interface

adhesion.
115

Extension At Work

ExtSample.h

Macros for an extension class

[.]

{
CATDeclareClass;

public:
ExtSample() ;
~ExtSample() ;

/[CATISample2 adhesion
... Method3(...) ;

/I Other methods

[..]
Hi

#include “CATBaseUnknown.h”

class ExtSample: public CATBaseUnknown

3rd argument useless

for an extension

Copyright DASSAULT SYSTEMES 2000

ImplSample

ExtSample.cpp

[...]
#include “ExtSample.h”

CATImplementClass (ExtSample,
DataExtension,
CATBaseUnknown,
ImplSample)

[---]
/[CATISample2 adhesion

[...]
... ExtSample::Method3(){ ... }

/I Other methods
[...]

CATISample

L

ExtSample

CATISample2

116

Extension Types

Data extension

» It contains methods and dafta.
* One extension instance per implementation object instance

Code extension

» [t contains only methods.

» A single extension instance for all the implementation object
instances

Copyright DASSAULT SYSTEMES 2000 117

Late Typing

In this lesson you will learn how to instantiate types unknown at build time

= Late Type

= Late Type at work

= Late Type Instantiation
= Late Type Inheritance

Copyright DASSAULT SYSTEMES 2000 118

Late Type

The late typing is a mechanism which enables the
instantiation of components by name at run time

An object is defined by a character string, its late
type, and not any more by the name of the
implementation class.

A late type object adheres to interfaces using the
extension mechanism.

The generic object that provides this capability is
CATODbject.

Late typing is used for documents, containers,
features ...

* ie object types that the system must be able to instanciate in some generic
code written prior to these new type definition (hence late)

Copyright DASSAULT SYSTEMES 2000 119

Late Type At Work

Extension declares the type of implementation object they extend.

The extended type is specified with a string.

In case of late type it refers to an instance of a virtual class.
The instance is a CATObject one but the corresponding type is

the one defined by the virtual type.

-------------- real type - name of the class
CATODbject . . virtual type - attribute of the class

m Object ExtA

Extension for A type

—O CATIContainer

Object ExtA2

Extension for A type

—O CATIPersistent

Copyright DASSAULT SYSTEMES 2000

120

Late Type At Work

Object ExtA

Extension for A type

Object ExtA2

Extension for A

<+— PIng

< bing j I

CATIContainer

CATIPersistent

libA

libA2

Copyright DASSAULT SYSTEMES 2000

The first column of the
dictionary refers to a late
type name instead of an
actual class name.

A CATIContainer libA
A CATIPersistent libA2

121

Late Type Instantiation

Late types are instantiated
by special entities (global

functions or factories). «CATIContainer» «A»

The factory uses the / | iie e ey /
dictionary to find out if the
required interface is

supported by the late type.

Appli.dic

A CATIContainer libA
A CATIPersistent libA2

eXtenSion iS Created- An J —O catiContainer

instance of the required
interface is retrieved and
passed back to the
requester. .

Copyright DASSAULT SYSTEMES 2000

Extension for «A» type

Thanks to libA2 a new
[Object ExtA

Late Type Inheritance

CATODbject

A

00
A

A

00
AB

—

Copyright DASSAULT SYSTEMES 2000

In the same way than real type,
virtual types support inheritance.

Object ExtA

Extension for A type

—O LifeCycleObject

Object ExtAB
Extension for AB type

—O CATIPersistent

123

Additional Information : Epilog

OM Component inheritance

JAN

OM Interface inheritance

Component

. « Base Imp » || « late type »

Base

« Code|Data Extension » O
g « Code|Data Extension » O
g' « Code|Data Extension » o
-k Extension 0O ———-- |
<

!

1

|:|:| Client
Factories
Querylnterface()
AddRef()

Release()

.....‘.0.‘.‘.‘.‘l‘.‘l....

Copyright DASSAULT SYSTEMES 2000 124

To Sum Up ...

In this Course you have seen...

% Objects handling with Interfaces
¥ The Implementation and Extension mechanism

« The Late Typing

Copyright DASSAULT SYSTEMES 2000 125

CAA V5 ObjectSpecsModeler

In this course you will learn how to create your objects in CATIA
V5 infrastructure and how to define their behaviors

@ Introduction to Specification Modeling
@ Object Specs Modeler Objectives

@ About Features

® Programming Tasks

9 About Features Extensions

@ Programming Tasks

@ About Providers

Copyright DASSAULT SYSTEMES 2000 126

Introduction to Specification Modeling

In this lesson you will learn the need in Specification/Result

& Accelerating the Art-To-Part Process

= CATIA Application Evolutions

& Needs For Next Generation Products

&= CATIA Specification Modeler Objectives

Copyright DASSAULT SYSTEMES 2000 127

Accelerating the Art-To-Part process

e Capturing specifications and Generating
results

I
=, —= QAT >

Drafting specifications

(0 O

Benefits:
* Results are generated faster
« Company rules and know-how are captured
* Result is explainable
» Designers do design, not clerical tasks

Copyright DASSAULT SYSTEMES 2000 128

CATIA Application Evolutions

First Generation
CATIA V1/V2

* Drafting
» Surface Modeling

Second Generation
CATIA V3/IV4

» CSG Solid

» Generative Drafting

« GSM

 Sheet Metal Aerospace

Copyright DASSAULT SYSTEMES 2000

User produced results rather
than specifications

Changes upwards in the
spec/result tree cause big
reworks downstream

First Specification editors

First generation applications
flaws are removed BUT...

Every application defines its
own spec/result paradigm

Applications are not all
spec/result oriented

129

Needs For Next Generation Products

Provide a general specification/result
management platform within the CATIA

infrastructure

» Offering common services to all applications willing to go
the « generative way »

* Open for customization by those applications
* In order to
— Speed up the development of such applications

— Deploy a consistent and pervasive approach for
spec/result throughout CATIA

Copyright DASSAULT SYSTEMES 2000

Mech. Gen. App. #1
Mech. Gen. App. #2

Mech. Spec.
Management
Infrastructure

130

Other Gen. App.

ObjectSpecsModeler Objectives

Provide an infrastructure for Specification/Result
management, and therefore Associativity

» Capability to link specifications by aggregation or reference
» Generic mechanism for change propagation
» Persistency

Model should be extendable at runtime

» with user defined specifications
» with new Dassault Systémes specifications

Copyright DASSAULT SYSTEMES 2000 131

Specification and Result Management

Copyright DASSAULT SYSTEMES 2000

H

Specs
[J H, Sketch: Pad spec
[J Lines to connect, radius: corner spec

Result

—® [B-Rep for Pad
—® O 2D Geometry for corner

Pad

Height

Sketch

___ | Line1

— | Line2

— | Radius

132

Need for a Versatile Update Mechanism

There is a need for a generic update mechanism.

- This mechanism should be transparent enough to
minimize coding effort,

But yet customizable to let application developers
define their own update policy:

 Manual or automatic,
* Local or global.

Copyright DASSAULT SYSTEMES 2000 133

Need for User Defined Specifications

- That can be defined at run time

That can be made persistent for future usage

Specification catalogs

That are treated as peers by CATIA-defined specs

Copyright DASSAULT SYSTEMES 2000 134

Need for User Defined Specifications

[%]CATIA V5 - [Part1] = E3
== x|

n Start File Edit Wi Inzert Tonls Window Help
1 - - r
L DB B S BB fw@R2(2 Userassembles .|
> features to create new >
O = —
— IS
5 2N 2 9 2
5 - ERE
= 2} Ly 3,

ﬂ

NG

=

5. By saving user defined
feature in catalog, company
standard features basis is

enriched

Eeatures

1. User instantiates

features from catalog

4. User saves final result MyDocument.CATPart
into a document \

(L=L=7

Copyright DASSAULT SYSTEMES 2000 135

ObjectSpecsModeler Principles

In this lesson you will learn the Data modeler and model of CATIA V5

& Solution Provided by the Spec Modeler
= A Data Modeler with Embedded Services
& A Generic Update Mechanism is Provided
&= A Catalog Based Data Model

& Prototype / Instance

Copyright DASSAULT SYSTEMES 2000 136

Solution Provided by the Spec Modeler

A Data Modeler with embedded services

* For a Feature based application
« Along with a mechanism to manage updates

A Data model that is stored in a catalog

* No hard coded specification

» Extensibility, possibility for user defined specification
 Data model can be modified, even at runtime

» Introspection

A Prototype/Instance object model

» To allow dynamic instantiation

Copyright DASSAULT SYSTEMES 2000 137

A Data Modeler with Embedded Services

Configuration
Effectivity and specification filtering

Security
Any feature can defines R/W access on
its attributes

Transactions
Any feature can undo modifications
applied to it

Revision
Versioning control

Persistence
Any feature can stream/unstream itself
(model / Data base)

Feature

/

Events
Any feature is an event sender on its
attributes modification

Cut and Paste

Cutting and pasting features onto each
other is semi automatic

Copyright DASSAULT SYSTEMES 2000

Link Management
Facilities for referencing inside parts of
features in a stable way

Introspection
Any feature can list or add attributes
(referenced and aggregated objects), ...

Status

Lock

For concurrent use

Maturity and release process

138

A Generic Update Mechanism is Provided

Spec

Spec

&

Spec

&

Propagating change requests across the spec
tree is under the responsibility of the spec

modeler infrastructure...

-

Change

Spec

&

...while deciding when and how
responding to change request

Is under the responsibility of the
application

Copyright DASSAULT SYSTEMES 2000

Changed

&

&

Spec &
Spec N
Spec
Spec
Spec &

A Catalog Based Data Model

The Data model is defined in a separate document
» A feature catalog

This approach has the following advantages:

« Extensibility, a feature can be extended by inheritance with new attributes later
on with a complete compatibility with existing instance.

* Maintainability, the data model is not hard coded, therefore implementation can
be modified.

» Introspection, a feature knows its attributes, and its super type (not the case in
C++).

Copyright DASSAULT SYSTEMES 2000 140

Prototype / Instance

Referencel/lnstance Prototype/lnstance
C++ SpecsModeler

0 0. -0
F—o 90—, s 8

- All instances for a given reference » Instances can be made different from the
are alike reference

- New instances can be obtained only | ° Instances can in turn be used as new
from the reference references

» Every object is instance & reference at the
same time (hence « prototype »)

 Instances and prototypes can be
synchronized (attributes structure) when
needed

Copyright DASSAULT SYSTEMES 2000 141

About Features

In this lesson you will learn the CATIA V5 Features creation and management

& What is a CAAVS Feature

& Feature Update Mechanism

& Feature Attributes

&= Feature Catalog and Instantiation
& Feature and Late Typing

& Feature and Persistency

&= Feature Interfaces

& Summary

Copyright DASSAULT SYSTEMES 2000 142

CAA V5 Features

A feature is the basic object for specification
modeling.

— A feature stores specifications and produces one
or several results through an update mechanism

— It owns some Attributes
— It follows the prototype/instance pattern

— The prototype is the skeleton of the Feature, its data description

— It is a late type object
— It is persistent

Copyright DASSAULT SYSTEMES 2000 143

Specification and Result Management

- A feature owns some specifications and generates results
through an update mechanism.

— Feature's update is triggered by a modification in the
specifications.

— A specification can be a string, a real, an integer or
another feature.

— A result can be anything from features to geometry.

Specification = Input data Result = Output data

Update
Specifications |:||:| > Results

Copyright DASSAULT SYSTEMES 2000 144

Feature Update Mechanism

The Specs Modeler provides the infrastructure to
manage updates.

— It automatically propagates notification of change
across the specification tree, but it does not
trigger the update itself.

— Deciding if an object must be updated or not is
the responsibility of the application

Pad 2: Notification
propagated by the
Sketch specs modeler

L

Line

Copyright DASSAULT SYSTEMES 2000

Pad

< 3: Update decided

&

Sketch

/ by the application

e 1: Feature modified

4

Line

145

Feature Attributes

Specifications and results are stored in the feature's
attributes.

— An attribute is similar to a class member in C++

— An attribute can be a double, an integer, or another
feature.

— An attribute has a quality (input, output or neutral)
» Input attributes store Specifications
» Output attributes store Results generated from the Specifications
» Other properties are stored in Neutral attributes.

Copyright DASSAULT SYSTEMES 2000 146

Attributes and Update

When a feature is modified (1)

» Features that take this feature as an input are
marked not up to date (1.1)

* Features that are output of this feature are
marked not up to date (1.2)

When a feature must be updated

(2)

» If this feature is an output of another feature,
then its owner is updated instead (2.1)

» Input features are updated first

In both case neutral attributes are
ignored.

Copyright DASSAULT SYSTEMES 2000

: 1: Solid is
Solid modified
Solid to
offset
2.1: Owner In
feature, is
updated , | Offset 1.1: Offset is
instead of the Out not up to date
result
Result
\/
2: Update Solid
required on 1.2: Solid is
solid not up to date

147

Feature Catalog

Feature definitions are stored in a catalog file
— A feature definition (skeleton) is called a Startup

— There can be as many catalog file as needed.

» User catalog files end with .CATfct
» DS catalog files end with .feat

Steps to create a new Startup:

1:Createor [\ 2: Create startup in
upgrade catalog | 01011 catalog
Feature
101010 <>
0101... Startup
3: Save catalog

Catalog

Copyright DASSAULT SYSTEMES 2000 148

Feature Instantiation

Instantiation follows the Prototype/lnstance Pattern
— A feature is instantiated from its startup.
— The startup must be retrieved from the catalog.

— The instance will be an exact copy of the startup and
will retain any attributes with their initial default value.

1: Open Catalog

0101110
10100101

N

Catalog

Feature
Startup

/72: Read startup

from catalog

Copyright DASSAULT SYSTEMES 2000

3: Instantiate
Feature with a
factory

Feature
Instance
L

149

Feature and Late Typing

= A feature is a late type:

— Behaviors are provided through the extension
mechanism (an Object Modeler service).

— Inheritance between feature is allowed
» New feature will inherit both behaviors and attributes of its super type

Father Feature

JAN

Feature

<< extends >> T .
OM Extension F———Q Interface

Copyright DASSAULT SYSTEMES 2000 150

Feature and Persistency

To be persistent a feature must be created in a container.
This container belongs to a document.

— Saving the document will in turn save the feature.

Instances

Startup A
1: Instantiation 7 —
: N 7
/ Q / 2: Save O
Catalog Contaiper Document on
Disk

Document in memory

Copyright DASSAULT SYSTEMES 2000 1561

Feature Instances

Every feature is an instance of a CATSpecObject
— It implements several DS interfaces:

Interface to instantiate a

CATISpecObject / startup, and manage attributes
LifeCycleObject — Interface to remove a feature

Any Feature ———O CATIExtendable

— Interface to extend a feature

Interface to valuates feature’s
CATISpecAttrAccess *— attributes

CATISpecUpdate *——— Interface to manage feature
update

Copyright DASSAULT SYSTEMES 2000 162

Feature Interfaces Migration

From RS, feature interfaces will undergo some major
changes.

— CATISpecObject interface is deprecated and will be
replaced by the following interfaces:

» CATISpecBase for feature instantiation
o CATISpecAttrManager for attribute management

— Other deprecated interfaces are:

» CATISpecAttrAccess (attribute valuation) will be replaced by CATISpecAttrValue

» CATISpecAttrKey (attribute index for fast access) will be replaced by
CATISpecKey

Copyright DASSAULT SYSTEMES 2000 163

Feature Interfaces (V5R38)

At the end of the migration, feature interfaces will be:

Interface to remove a feature

/ Interface to instantiate a startup
CATISpecBase /

LifeCycleObiject Interface to extend a feature
CAT Extendable / Interface to manage feature’s
Any Feature ——CO / attributes
CATISpecAttrManager
Interface to valuates feature’s
CATISpecAttrValue — attributes
CATISpecUpdate *—— Interface to manage feature

update

Copyright DASSAULT SYSTEMES 2000 154

About Features

Summary

CATODbject

Y'Y YA

o
—

CATSpecObject

Super Type

Ll
0”

MyType

CAAEMyType

CAAEMyTypeBuild

HRESULT Build() {... }

Copyright DASSAULT SYSTEMES 2000

CATISpecObject

CAAIMyType

CATIBuild

165

Programming Tasks

In this lesson you will learn how to implement Features

& Creation of a New Feature
&= Feature Catalog management

Copyright DASSAULT SYSTEMES 2000 156

Process to define a new feature

Design my Start-up

Define the reference data structure

* Create or upgrade a Catalog
* Create the Startup

* Define the Startup attributes
» Save the Catalog

Implement the different behaviors

» Provide the implementations for the interfaces to be supported by the feature
through Object Modeler extension(s)

» If needed, provide the Build mechanism

Create instances

e Clone the startup
 Set the instance attributes

Copyright DASSAULT SYSTEMES 2000 167

Parallel between regular C++ and
ObjectSpecsModeler

C++ ObjectSpecsModeler

Data Structure defined in a header file Data Structure defined by program and
stored in a feature catalog

MySpecObiject.h MyCatalog.CATfct
Class MySpecObject: public RootObject \I/ &
{

public: \ J—| RootObject I
: . C++ inheritance to be

MySpGCObj_GCt()’ replaced by feature :

MySpecObject(double value); inheritance \ :

~MySpecObiject();
I

MySpecObject

)

private: Data members replaced
double _myValue; €— by attributes —>

myAttribute
l

&

Copyright DASSAULT SYSTEMES 2000 158

Parallel between regular C++ and

ObjectSpecsModeler

C++ ObjectSpecsModeler
Methods are defined in a header file and Supported interfaces are defined in a
implemented in a cpp file dictionary and implemented by an
extension
MySpecObject.h
Class MySpecObiject: public RootObject
{ MySpecObject
public:
MySpecObject();
MySpecObject(double value);
, ~MySpecObject(); CAAEMyType I
4 Method(: < » Y void myMethod|() CAAIMyType
void myMethod(); Behavior implemented {...}
I through extension
private:
double _myValue;
}

Copyright DASSAULT SYSTEMES 2000

159

Parallel between regular C++ and
ObjectSpecsModeler

C++ ObjectSpecsModeler
Instantiation through the class Instantiation from the startup retrieved in
constructor and the new operator the feature catalog, and then attribute
valuation
MyObject * mylnstance = NULL; Injtances
mylnstance = new MyObject(10.0); Startup —

O |
O \‘<>

Document in memory

MyCatalog.CATfct Container

Copyright DASSAULT SYSTEMES 2000 160

Catalog Definition

Create a new catalog
o Suffix: CATfct

 Must be located in the CNext\resources\graphic
directory of your framework

» Use the CreateCatalog method defined in header file
CATCatalogFactoryServices.h

CATUnicodeString catalogName = "MyCatalog.CATfct";
CATICatalog* piMyCatalog = NULL;

HRESULT rc = ::CreateCatalog(&catalogName, &piMyCatalog);
Il Set a client identification for the catalog.

SAELLEE Bl @RS e A specific identifier that allow
rc = myCatalog -> SetClientld(&clientid); access to your catalog.

Copyright DASSAULT SYSTEMES 2000 161

Catalog Definition

Or upgrade an existing catalog
 Must be a user catalog

« Use the UpgradeCatalog method defined in header
file CATCatalogFactoryServices.h

— The client ID is needed to open the catalog

CATUnicodeString catalogName = "MyCatalog.CATfct";

CATICatalog* piMyCatalog = NULL,;

CATUnicodeString clientld = “...";

HRESULT rc = ::UpgradeCatalog(&catalogName, &piMyCatalog, &clientld);

Copyright DASSAULT SYSTEMES 2000 162

Catalog Definition

Create the startups

 See next slide

Add Attributes to your startups (Next Slide)

Save the catalog

» Use the SaveCatalog method defined in header file
CATCatalogFactoryServices.h

CATUnicodeString storageName = ...;
HRESULT rc = ::SaveCatalog (&piCatalog , &storagePathName);

Copyright DASSAULT SYSTEMES 2000 163

Startup Definition

A startup is defined by:

* jts name (instance name)
— CATUnicodeString

o its late type
— CATUnicodeString

* its super type (optional, the late type of the startup it

OM-derives from)

— CATUnicodeString

— The new startup will inherit all the attributes and behaviors defined at the
level of the super type startup.

CATBaseUnknown * myStartUp = NULL;

HRESULT rc = myCatalog->CreateSUInCatalog(&myStartUp,
&myStartUpName, &myStartUpType,
“CATISpecObject”,
&myStartUpSuperType);

Copyright DASSAULT SYSTEMES 2000 164

Startup Definition

There are three different cases

— Creation of a startup from scratch
* Use CATICatalog::CreateSUInCatalog without super type.

— Creation of a startup that derive from a user startup

» If the original catalog is not already open use AccessCatalog to open it in read
only mode.

 Then use CATICatalog::CreateSUInCatalog.

— Creation of a startup that derive from a DS startup

» In the current version, open the DS catalog with OpenCatalog then call
CATICatalog::CreateSUInCatalog.

» Later, you will use a specific factory to create a derived startup.

Copyright DASSAULT SYSTEMES 2000 165

Feature Attribute Definition

Name (CATUnicodeString)

Type (C++ enumeration value)
« A simple type
— tk_string / tk_double / tk_boolean /tk_octet/ tk_integer
» A feature type

— tk_specobject: a reference to another feature
— tk_component: the feature is aggregated

« a list of any other types:
— tk_list,
A more general object type:

— tk_external: a reference to an object that implements the CATILinkableObject
interface

Quality: defines the attribute role in the build process and update
mechanism

« sp_ OUT: output data
 sp_IN: input data for the Build process
« sp NEUTRAL: attribute ignored by the update mechanism

Copyright DASSAULT SYSTEMES 2000 166

Adding Attributes to the Startup

Get a pointer to CATISpecObject on the startup:

CATISpecObject * myStartUpSpec = NULL;
rc = myStartUp->Querylnterface(lID_CATISpecObject,(void**)&myStartUpSpec);

Use the AddAttribute method from the CATISpecObject
interface to define a new attribute

An attribute access mode is public by default, but can
be set to private

e use the SetAccess method

Copyright DASSAULT SYSTEMES 2000 167

Attribute Definition Example

CATUnicodeString MyAttributeName = “Sketch";
CATISpecAttribute* MySketchAttribute = NULL;
MySketchAttribute = myStartUpSpec->AddAttribute(MyAttributeName,

Definition of an input attribute tk_specobject,
referring to another spec object sp_IN);

CATUnicodeString MyListAttributeName = “List";
CATISpecAttribute* MyListAttribute = NULL;
MyListAttribute = myStartUpSpec->AddAttribute(MyListAttributeName ,

Two ways to define an attribute tk_list,tk_specobject,
corresponding to a list of values sp_IN);

Il Or

MyListAttribute = myStartUpSpec->AddAttribute(MyListAttributeName ,
tk_list(tk_specobject),
sp_IN);

Copyright DASSAULT SYSTEMES 2000 168

Setting Attributes Default Values

To set attribute default value, use the appropriate
method:

 CATISpecAttribute::Setxxx

— SetString to assign a value to a tk_string type attribute,
— SetSpecObject, SetListString, SetDouble, ...

CATISpecAttribute* MyDoubleAttribute = ...;
MyDoubleAttribute->SetDouble(1.5);

To set an attribute value by using another attribute, use
o CATISpecAttribute::SetSpecAttribute

Copyright DASSAULT SYSTEMES 2000 169

Feature Instantiation

To create an instance,
 Open the Catalog in read only

— Use method AccessCatalog defined in file CATCatalogFactoryServices.h
* Retrieve the Startup

» Instantiate the startup
— Use the CATISpecObject::Instantiate method

o Set attributes values

Open the catalog

CATIContainer *piSpecCont = ...;
CATUnicodeString catalogName = "MyCatalog.CATfct";
CATUnicodeString clientlD = "ID";

CATICatalog *piCatalog = NULL;
rc = ::AccessCatalog(&catalogName, &clientID, piSpecCont, &piCatalog);

Copyright DASSAULT SYSTEMES 2000 170

Feature Instantiation

— Retrieve the Startup if not already done

CATBaseUnknown* myStartUp = NULL;

CATUnicodeString myStartUpName = “MyStartUp";

rc = piCatalog->RetrieveSU(&myStartUp,
&myStartUpName,
“CATISpecObject");

— Instantiate the Startup in the feature container:

CATISpecObject* piSpecOnStartup = NULL;
rc = myStartUp->Querylnterface(IID_CATISpecObject,
(void**) &piSpecOnStartup);

CATISpecObject* piSpecOnInstance = piSpecOnStartup ->Instanciate (myStartUpName, piSpecCont);

Copyright DASSAULT SYSTEMES 2000 171

Assigning values to feature attributes

— Attributes should be accessed through the
CATISpecAttrAccess interface.

o Store an attribute key to speed up access

static CATISpecAttrKey * _attKey = NULL;

e Use GetXXX and SetXXX methods to access to the
value Retrieve the access interface

CATISpecAttrAccess *piAccess = NULL;
HRESULT rc = myFeature->Querylnterface(IID_CATISpecAttrAccess,
(void **) &piAccess);

if (I_attKey) {

_attKey = piAccess->GetAttrKey(”MyAttribute”); If necessary, initialize the attribute key
}

double myValue = piAccess->GetDouble(_attKey); Retrieve the attribut value using its key

Copyright DASSAULT SYSTEMES 2000 172

Implement the Feature Behaviors

Interfaces are implemented through the Object Modeler
extension mechanism

At least you will want to:

* Provide a build mechanism for your feature
» Encapsulate in your own interface(s) the access to the feature's attributes

You may also want to implement some DS interfaces to
better integrate your feature in CATIA V5.

Copyright DASSAULT SYSTEMES 2000 173

Feature Build

To allow re-computation, a feature must implement the

CATIBuild interface.
<< Feature >>
CAAFeature
<< extend >>I]\ <<OM Extension>> _
e CAAEBuildOnFeature —O CATIBuild

CATIBuild Interface has only one method:

virtual HRESULT Build();

* It, retrieves the input attributes values,

» calculates the modified output and neutral attributes
values,

o stores the modified attributes values.

Copyright DASSAULT SYSTEMES 2000 174

User Catalog Management

Catalog files are dedicated to store feature definition
(startup).

A Catalog may store any number of startup.

Once created a catalog should never be deleted

* In fact a catalog has a unique ID which is used to identify the startups it contains.
When a catalog is deleted and recreated, existing instances of feature will still

reference the old catalog ID.
* Instead upgrade it.

Catalogs implement the interface CATICatalog.
« Use this interface to add startups to a catalog

Copyright DASSAULT SYSTEMES 2000 175

User Catalog Services

DS provides several methods to manage user catalogs,
they are defined in file CATCatalogFactoryServices.h
 CreateCatalog

— This method creates a new catalog.

 UpgradeCatalog

— This method open a catalog for modification.
— Use this method when you want to modify an existing catalog.

 AccessCatalog
— This method open a catalog in read only for feature instantiation

« SaveCatalog

— Save a new or an upgraded catalog

To protect the use of your catalog, those methods takes a
client ID.

Copyright DASSAULT SYSTEMES 2000 176

Data Compatibility Rules

To ensure a ascendant data compatibility between
subsequent release of your application you must follow
some rules:

* On a Startup:
— You can add or delete attributes.
— You can change an attribute initial value.
— You cannot modify an attribute type or quality (in / out / neutral).
— You can change it's name.

 On a Catalog
— You can add new startups, as long as their name are unique in all catalogs.
— You cannot delete a startup or move it to another catalog.
— You cannot change the name of catalog or try to create it twice.
— You cannot modify an attribute type or quality (in, out or neutral).

Copyright DASSAULT SYSTEMES 2000 177

Accessing to DS Catalogs

The CATCatalogFactoryServices methods do not work on
DS catalogs.

In the current version of CAA your are able to open a DS

catalog for startup derivation.

« Use the method CATICatalogManager::OpenCatalog followed by
CreateSUInCatalog on your catalog to create a startup that derive from a DS

startup.

In the subsequent version, you will not be able to open a

DS catalog directly.
» Instead you will use a factory method, that do both the OpenCatalog and the
CreateSUInCatalog.

o There will be one factory method for every feature open to derivation

Copyright DASSAULT SYSTEMES 2000 178

About Features Extensions

In this lesson you will learn the concept of Features extensions

& Feature Extension

Copyright DASSAULT SYSTEMES 2000 179

Feature Extension

The Specification Modeler provides a mechanism to extend
an existing feature by adding new attributes on it, without
inheritance.

— A feature extension has its own attributes (neutral).

— Its definition is stored in a catalog (.CATfct).

— A feature extension is linked with an application.

— An feature extension is created on a feature at run-time.

— It is stored in an applicative container and can be
activated and deactivated on demand.

Copyright DASSAULT SYSTEMES 2000 180

Feature Extension

The feature extension mechanism allows data sharing without
any documents corruption.

A feature extension will be active in an existing document
only if the application and the extensions catalog are
presents.

if not, the feature behaviors are not impacted

A feature extension has its own Interface to access these
attributes.

Several feature extensions could extend a feature for one or
different applications

Any feature extension could extends any feature.

Copyright DASSAULT SYSTEMES 2000 181

Feature Extension

Example :

<< extends >>

<<feature>> <
Pump <

<<feature extension>>
PumpElectricalData
sExtension

« Sees »

2 “uinte Electrical Application

Electrical Datas

« Sees »

N

<<feature extension>>
PumpHydraulicDatas
Extension

=== Hydraulic Application

<___I

<< extends >>

Hydraulic Datas

« See »

e~ . e T T T T mmmmmmmmmee- Other Applications

Copyright DASSAULT SYSTEMES 2000

182

Programming Tasks

In this lesson you will learn how to implement a Feature Extension

& Process to define a Feature Extension
& Define the feature extension data structure
& Create instance in document

Copyright DASSAULT SYSTEMES 2000 183

Process to define a Feature Extension

Define the feature extension data structure

» Create the extension catalog

» Create the feature extension in the catalog
» Define the feature extension attributes

« Save the Catalog

Implement on the feature extension the attributes access
interface

Create instance in document

* Create an applicative container for an applicative domain
 Open the extension catalog in the applicative container
» Activate the feature extension on the feature

Copyright DASSAULT SYSTEMES 2000 184

Process to define a Feature Extension

Management

» Verify that a feature extension is active
» Access the feature extension’s attributes
* Query all the active feature extensions of the feature

Copyright DASSAULT SYSTEMES 2000 185

Define the feature extension data
structure

— Create the extension catalog

CATUnicodeString CatalogName = "MyExtCatalog.CATfct";
CATICatalog* piMyExtCatalog = NULL;

HRESULT rc = ::CreateCatalog(&CatalogName, &piMyExtCatalog);
Il Set a client identification for the catalog.

CATUnicodeString Clientld = "MyClientld";

rc = piMyExtCatalog -> SetClientld (&Clientid);

— Create the feature extension in the catalog

CATIExtensionFactory *piFactoryOnMyExtCatalog = NULL,;

rc = piMyExtCatalog -> Querylnterface (IID_CATIExtensionFactory, (void**) &piFactoryOnMyExtCatalog);
const char “ExtensionLateType = "MyExtension";

CATIExtension *piMyExt = NULL,;

rc = piFactoryOnMyExtCatalog -> CreateExtension (ExtensionLateType ,

ExtensionSuperType, = May be NULL if no inheritance
&piMyExt);

Copyright DASSAULT SYSTEMES 2000 186

Define the feature extension data
structure

— Define the feature extension attributes

CATISpecObject *piSpecOnMyExt = NULL;

rc = piMyExt -> Queryinterface(IID_CATISpecObject, (void**) &piSpecOnMyEXxt);

piMyExt —> Release(); piMyExt = NULL;

Il example :

CATUnicodeString AttributName ="...";

Il by default, the attribute’s quality of a feature extension is NEUTRAL

CATISpecAttribute *piAttribute = piSpecOnMyExt -> AddAttribute(AttributName, tk_string);
piAttribute -> Release(); piAttribute = NULL,;

— Save the catalog

rc = ::SaveCatalog(&piMyExtCatalog, CatalogName);
piMyExtCatalog -> Release(); piMyExtCatalog = NULL,;

Copyright DASSAULT SYSTEMES 2000 187

Create an instance in a document

-~ Create an applicative container for an applicative
domain

CATUnicodeString AppliContld = "ContainerName";
CATUnicodeString ContainerLateType = "MyContainerType"; = The container must be of type CATFeatCont
CATUnicodeString ContainerSuperType = "CATFeatCont"; or must derive from a CATFeatCont
CATBaseUnknown *pAppliCont = NULL;
rc = ::CATCreateApplicativeContainer(& pAppliCont,
pDocument, Pointer on the document (CATDocument *)
ContainerLateType ,
IID_CATIContainer,
ContainerSuperType,
AppliContld);

CATIContainer *piAppliCont = (CATIContainer*) pAppliCont;

Copyright DASSAULT SYSTEMES 2000 188

Create an instance in a document

Open the extension catalog in the applicative
container

CATICatalog *piMyExtCatalog = NULL;
rc = ::AccessCatalog(&CatalogName, &Clientld, piAppliCont, piMyExtCatalog);

iAppliCont -> Release(); . S : :
PIAPPT 0 Open the catalog inside the applicative container. From that point,

piAppliCont = NULL; extensions will be automatically instantiated in this applicative container.
piMyExtCatalog -> Release();

piMyExtCatalog = NULL;

Il Get a CAT Extendable pointer on the feature to be extended
CAT Extendable *piExtendableFeaturelnstance = NULL;
rc = Featurelnstance->Queryinterface(1ID_CAT Extendable,
(void**) &piExtendableFeaturelnstance);

Copyright DASSAULT SYSTEMES 2000 189

Create an instance in a document

Activate the feature extension on the feature

CATBoolean CreatelfNecessary = TRUE;

rc = piExtendableFeaturelnstance -> ActivateExtension(ExtensionLateType ,
AppliContid ,
CreatelfNecessary);

The link between the feature (thru the CAT Extendable interface) and the feature extension is created
at this step

Copyright DASSAULT SYSTEMES 2000 190

About Providers

In this lesson you will learn the concept of Providers

= Providers
&= Programming with providers

Copyright DASSAULT SYSTEMES 2000 191

Providers

The Providers mechanism allows an external application
using Feature extension to be integrated in the native
behaviors of a DS application.

In other words, DS applications do not need to be aware of
the specific contents of each applicative container or
feature extension found in the document and yet still be
capable of taking these into account when performing
native tasks, such as navigation or visualization.

Providers are not persistent

Copyright DASSAULT SYSTEMES 2000 192

Providers

Five provider interfaces have been defined:

& CATINavigateProvider corresponding to
CATINavigateObject.

& CATI3DVisuProvider corresponding to CATI3DGeoVisu.
& CATllconProvider corresponding to CATINavigModify.
& CATICtxMenuProvider corresponding to CATIUIActivate.

& CATIParmProvider corresponding to CATIParmPublisher.

Copyright DASSAULT SYSTEMES 2000 193

Providers

Example :
e A ol o T T T T T T T T 1
| |
| i : O— <<featureDS>> | <<OM Implementation>> , ,
| CATINavigateObject Pump ! CAANavi%ProviderlmpI ——(Q CATINavigateProvider
7,y l
I
|

<<feature>>
AggregatedFeature

| -

——(CATINavigateObject

<< extends >> <<feature extension>>
PumpExtension

: Applicative Container

Using CATINavigateProvider allows to link
the aggregated feature to the DS feature

Copyright DASSAULT SYSTEMES 2000 194

Programming with Providers

Implement the provider interface

<<OM Implementation>>
CAAProviderimpl

——(O CATIxxxProvider

Declare Provider on the document after you create your

applicative container

Il Retrieve a CATIProviders pointer on the current document
CATIProviders *piProvidersOnDocument = NULL,;
HRESULT rc = pDoc -> Queryinterface(lID_CATIProviders, (void**) &piProvidersOnDocument);

Il Declare provider to list the children of the applicative container
CAAProviderimpl*pMyProvider = new CAAProviderimpl();
rc = piProvidersOnDocument -> AddProvider (CATIxxxProvider::Classld(), pMyProvider);

Copyright DASSAULT SYSTEMES 2000

195

Programming with Providers

Example : Implement CATINavigateProvider::GetChildren

HRESULT CAANavigProviderimpl::GetChildren(CATBaseUnknown * iObj ,
CATLISTP(CATBaseUnknown) ** oListChildren)

CATILinkableObject * piLinkableOnExtFeature = NULL;

HRESULT rc = iObj -> Querylnterface (IID_CATILinkableObject, (void**) &piLinkableOnExtFeature);
CATDocument *pDoc = NULL;

if SUCCEEDED(rc) pDoc = piLinkableOnExtFeature -> GetDocument();

else return E_FAIL;

retrieve document

CATBaseUnknown * MyApplicativeContainer =NULL;
CATIldent idAppliCont = "CATFeatCont";
CATUnicodeString appliContName("MyApplicativeContainer"); Retrieve the applicative container
rc = ::CATGetApplicativeContainer (&MyApplicativeContainer,
pDoc,
IID_CATIContainer,
appliContName);

Copyright DASSAULT SYSTEMES 2000 196

Programming with Providers

Example : Implements CATINavigateProvider::GetChildren

CAAIlFeatureExt *piFeatureExt = NULL,;

rc =iObj -> Queryinterface (IID_ CAAlFeatureExt, (void**) & piFeatureExt);

if SUCCEEDED(rc)

{ CATIExtendable * plExtProd = NULL;
rc = piFeatureExt ->Queryinterface(lID_CATIExtendable, (void **) &plExendabletPump);
const char * ExtensionName = "PumpExtension";

check if extension is actived

rc = plExendabletPump->IsExtensionActive(ExtensionName,appliContName);

if SUCCEEDED(rc) retrieve aggregated feature
{ CATIPumpExtension * pIPumpExt = NULL;

rc = piFeatureExt ->Queryinterface(lID_CATI PumpExtension, (void **) &plExendabletPump);
CATISpecObiject * piSpec = plExendabletPump->GetAggregatedFeature();

(*oListChildren)->Append((CATBaseUnknown *)piSpec); Add aggregated feature to the list

}
retrun S_OK;

}

Copyright DASSAULT SYSTEMES 2000 197

To Sum Up ...

In this Course you have seen...

¥ The V5 Feature concept

¥ The Feature creation and management
¥ How to implement a Feature

« How to extend a Feature

¥ How to integrate providers

Copyright DASSAULT SYSTEMES 2000 198

CAA V5 Visualization

You will learn how to manage object representation

& Framework Objectives

& Model / View / Controller Architecture

& Visualization Interfaces
- CATIVisu
- CATIModelEvents

Copyright DASSAULT SYSTEMES 2000

199

Framework Objectives

Visualize a model

— A model is visualized thanks to a graphic
representation

Multi-window management

— Components can be seen in several viewers of the
same or of several windows at the same time

Direct manipulation

— Viewers provide 3D and 2D manipulators to interact
with the representation

Copyright DASSAULT SYSTEMES 2000 200

Architecture Principles

Model / View / Controller

— Assume the independence between the data model
and the presentation (view)

— Allow to change the viewer without impact on the
data

Visualization is ruled by the controller
— Manage one or several views of the data
— Notify the views when the data change

— Receive the user interactions to update the model
when necessary (object creation, modification or
deletion)

Copyright DASSAULT SYSTEMES 2000 201

Architecture Overview

5) Send
notification
6) Update the model Controll (user
if necessar ontroiier interaction
(———————————), e N CATCommand [€-f---------------------)
- 4) Sets the graphic
AEEAR i > CATVlsManager Y ' representation to the
| ! 1) A ' | | viewpoint
| Attaches 2)Sends Notification i | | i
\ 3) Asks for the graphic:
! representation v v
> ! ! Bag2D Bag3D
CATIModelEvents é :
CATSelector
CATIVisu | Viewpoint2D
L Viewpo'int3D <>—
CAAIGraph2DVisu |€{---- $
CATI3DGeoVisu |<-{---- Viewer
Model View

Copyright DASSAULT SYSTEMES 2000 202

Controller Missions

The controller displays a root object (federative model entity) :
— It gets representations from the root object

|t displays the root object in every viewer and every
viewpoint defined in the document window.

— The root object asks representations for
its children to the controller

* It groups them in a bag
of representations

e Children may also be % 4V |
federative entities N —
(recursive process) Controller Root

object

Y

e

Displayed objects

Copyright DASSAULT SYSTEMES 2000 203

Controller Missions

The controller refreshes viewers according to model
changes

— Listens to events sent by the model
» Creation : Ask for new representations (if any)

* Modification : Modify or re-computes the
representation

* Deletion : Removes obsolete representations (if
required)

manages

viewer contents =

o A |

Copyright DASSAULT SYSTEMES 2000 204

Controller Creation

The controller CATVisManager is unique
— You are not responsible to create or delete it
— You can retrieve it by a global access method :

CATVisManager::GetVisManager();

Copyright DASSAULT SYSTEMES 2000 205

Root Object Attachment

Attachment from the Root Object to the Controller

— It creates one or several (i.e. 2D/3D) cells of
visualization

A cell of visualization is :
— A root object
— A viewpoint
— A list of visualization interfaces used by the
controller

— A CATSelector that allows the user to interact with
the representation

Copyright DASSAULT SYSTEMES 2000 206

Controller Protocol (1/4)

The controller has to know the Visualization interfaces

— The object behavior is described through a dedicated
interface that derives from CATIVisu.

— The root object and all its descendants adhere to it.

CATIVisu Root
A Obiject
CATI3DGeoVisu | | CATI2DGeoVisu | | My1DGeoVisu Displayed
Object

Copyright DASSAULT SYSTEMES 2000 207

Controller Protocol (2/4)

Controller uses the Visualization interfaces to:

— Create the initial graphic representation
 BuildRep method

— Update the representation
 ModifyRep method

— Build the representation for (pre)highlight purposes
» BuildHighlightLook method

— Build the list of selected elements when the
representation is selected

 DecodeGraphic method

Copyright DASSAULT SYSTEMES 2000 208

Controller Protocol (3/4)

Connection from Model to Visualization world

— CATIModelEvents sends events when the model is
updated

— These events inform the controller when re-
computation is needed

— The root object and its descendants adhere to it

CATIModelEvents O— Root Object

Displayed

CATIModelEvents O—— .
Object

Copyright DASSAULT SYSTEMES 2000 209

Controller Protocol (4/4)

User Interaction

— A CATSelector is created with a cell of visualization to
answer to user actions (Select, Pick, Drag, ...)

— A CATCommand can be used to catch and process the
notifications send by the CATSelector

— The CATCommand is associated to the CATSelector
during the Root Object attachment

Copyright DASSAULT SYSTEMES 2000 210

Events Tree

Il When you aggregate the displayed object to the root
CATIModelEvents _var spModelEventsOnRoot(piRoot);
piModelEventsOnRoot->ConnectTo((CATBaseUnknown*)DisplayedObiject);

Il When you want to update the visualisation
CATCreate Createnotif(DisplayedObject);

CATIModelEvents_var spModelEventsOnObject(DisplayedObject);
spModelEventsOnObject->GetDispacher(Createnotif);

Root Object ConnectTo
A notification can be
&= CATCreate P .
= CATModify SendNotification
= CATDelete Displayed
= CATModifyVisProperties Object

Copyright DASSAULT SYSTEMES 2000 211

Visualization Interfaces

CATIVisu
JAN

—— CATI2DGeoVisu O

—— CATI3DGeoVisu O
|
————— ... O

CATIModelEvents O

Copyright DASSAULT SYSTEMES 2000

Displayed
Object

212

CATIVisu Implementation

Adapter class : CATEXxtIVisu

— It provides almost all requested functions except
BuildRep

2 default interfaces : The same object can be represented
in 2D and/or 3D

— CATI2DGeoVisu and/or CATI3DGeoVisu
— the BuildRep method returns a pointer to a CATRep.

CATEXxtIVisu

A\

CATI3DGeoVisu O———— TSTEVisuOnMyObject

CATRep* BuildRep();

Copyright DASSAULT SYSTEMES 2000 213

Representations

CATRep [KO—— CATGraphicAttributeSet

JAN

CAT3DRep |O— CAT3DBoundingSphere

2\

—> | CAT3DBagRep CAT3DCustomRep Other Rep Types _I'l

CATGraphicPrimitive

JAN

I I
CAT3DLineGP CAT3DFaceGP Other GP Types _|-|

Copyright DASSAULT SYSTEMES 2000 214

CATIModelEvents Implementation

Adapter class: CATExtiIModelEvents
— No need to re-implement any method

CATExtIModelEvents

JAN

CATIModelEvents O TSTEEventsOnMyObiject

Copyright DASSAULT SYSTEMES 2000 215

To Sum Up ...

In this lesson you have seen...

« Model/View/Controller principle

« The interfaces which manage the Visualization of
Features

Copyright DASSAULT SYSTEMES 2000 216

ApplicationFrame

In this lesson you will learn the CATIA V5 frame and Documents edition
infrastructure

& ApplicationFrame

Copyright DASSAULT SYSTEMES 2000 217

Look and Feel of the CATIA V5 frame

Menu Bar

ot SporTeas [Edr Yew Deset Tsoh macee Hew Compass

/y_:l:-“uu_-, S et Current
g o ﬁ_- Workbench
Standard Toolbar: : |
New/Open/Save/Print .. 44— Select
Cut/Copy/Paste o O Command
Undo/Redo) b
Help ¥y
© ‘. Toolbars
e o & to manage
Specification e] - Objects
Graph View Point e =

Exns iaa |T5.p-¢ |

[Up T Las =

Di ki dras -—a < Panel

bt STEMS o I

Lwr I— Threoding

1| Theeaded
3D View Point] T |
4w Baties
BWT4FILEST0FIE 3 =0 @ 0 o] e J
Subect an pbjec! or a cormend | i i gl =
- @ ot | @ ey | @coea

Copyright DASSAULT SYSTEMES 2000 218

Workshop and Workbench

A workshop (or a workbench) defines a list of commands
accessible through menus or toolbars.

A workshop defines the common menus and toolbars
associated to a given document type.
A workbench provides specialized commands.
— Part Design for solid modeling

« Several workbenches may be associated to a given
workshop

— For the CATPart document, several workbenches are
available:

» Part Design, Wireframe and Surface Design, Free Style, Generative Shape Design

Copyright DASSAULT SYSTEMES 2000 219

A Model for Command Access

A command encapsulates a basic
user action:

* Creation, Edition, Analysis, Deletion

A workbench groups commands
dedicated to a given domain:

* Part Design, Generative Drafting,
Assembly Design, ...

A workshop groups common
commands to a set of

workbenches for a given
document type

The frame provides the generic
commands for all the workshops

Copyright DASSAULT SYSTEMES 2000

Command
1,N
N
Frame 0 Toolbar
0O.N 1N
1.1 O,N
LIOELITUEE Workshop Workbench

Type

220

Command Header

Command header hold necessary information to load the
command:

licensing management

availability conditions
pick ability

graphic appearance (_:?.t I/—
normal, focused, pressed 5};
text appearance
National Language Support

lazy-loading
load command code just-in-time

Multi-represented

Icon, Menu and Shortcut

Copyright DASSAULT SYSTEMES 2000 221

Command Header Creation

MyWorkshop.cpp

#include "CATCommandHeader.h*
MacDeclareHeader(CATMyCmdHeader)

void MyWorkshop::CreateCommands()
{
new CATMyCmdHeader(“CommandName*“ ,
“SharedLibraryDefiningTheCommand*
“CommandClassName™ ,
(void *) DataToBePassedToTheCommand);

Copyright DASSAULT SYSTEMES 2000 222

Presentations

Stort SgrTeas © [ile Ed¥ Wew Jeset Tool fisdes Help =l m|
The document BET PR TEET Y.
infrastructure =
defines the way it 5 o)
Is displayed: 2 ol
=] Il'.
> i W H
a 2_D view =
point 2
. A 3|
— a 3D view 2 @l
. & &
point o &
— a graph view

point __
_ . RTELPILLSC0ITE '3 = & AR o caricar
— a combination e fal

Copyright DASSAULT SYSTEMES 2000 223

Presentations

[®]CcATIA V5.3 (5]
Start File Edit Yiew Inset Tools Window Filker Help

«Several D5 @& % EE e fu B2
documents can (i | &
be displayed at | o L
MASTER | "DRAFT | WSIDICIFG | wzAUS3A | wzaUsSaC | Twioactt W < |[»] -
the same time -
-MDI: Multiple
Document
Infrastructure
BEeEAl . 0688 o carisr
Select an obiect or a command [=

Copyright DASSAULT SYSTEMES 2000 224

Path To Objects

P B el B e e ke Hee ALK

DS % U89 fu @@

=

Access an object is
done thru its ancestors.

Tl
s o e Ch
B " EX: when selecting a
Nen anans = line defined in a sketch,
E the complete path to
7 access the line is
1 retrieved through a
= S ERmnEsEE - CATPathElement=
B =55 \Part1\PartBody\Sketch
4\Line

Copyright DASSAULT SYSTEMES 2000 225

The Select Command

SELECT is the default "3';,;5“1“ R -
command: ne i
— Copy/Cut/Paste |2t= A B
them :

— Delete them i
— Provide them as ®
input for 5
command to be 2
launched -
(object/action i
paradigm) 3

WP SIRLLT0EE 3 S0 @ 0 E [0 ol o AT

§ kot 2 ol o0 0 ol | _I

Selection offers also a mean to provide
manipulators on objects.

Copyright DASSAULT SYSTEMES 2000 226

Selection management

il CHext - [CATPant1]
| File Edit Wiew Inset Took ‘wWindow Help

Each document is
controlled by an
editor managing the
selection.

5 FartBody
&
iterss ct1

[DeRasym-eoR|[HeAQ 2L E

Select an element

Copyright DASSAULT SYSTEMES 2000

Selection management

Group of objects:

CSO: Current Set of Object
 can be used by any command to retrieve the selected objects.

* Objects contained in the CSO have usually their graphical
representation highlighted

CATXSO: specialized by the following objects, known by the viewer:

 HSO: Highlighted Set of Objects: the objects that the command
highlights. Each object in the CSO is also in the HSO

 PSO: Pre-selected Set of Objects: the objects that are handled by a
manipulator set by the current command, and that are pre-activated
and moved.

ISO: Interactive Set of Objects:

* used to contain interactive objects, that is objects that are not part of
the document, but which are displayed to enable their document object

handling, such as manipulator handles.
Copyright DASSAULT SYSTEMES 2000 228

Object Edition

Object Edition is enabled in a way specified by the object:

if possible, an appropriate workshop is loaded

« depending on the fact that the CATIUlActivate interface is implemented by the
active object (whose edition is requested), or by one of its ancestors

* workshops are not reserved to document types (example: Sketch)

additionally an edition command may be started

« depending on the fact that the CATIEdit interface is implemented by the active
object (return the CATCommand class instance that enables the object edition)

* Activate method is called whenever the end user intends to edit the object by
double clicking or through the object’s contextual menu.

Copyright DASSAULT SYSTEMES 2000 229

Object Edition

Implementing CATIEdit Interface on an object

create an extension class that derives from CATExtIEdit
class and extends your object class (or late type) as a
data extension. Then implement the Activate() method.

—O CATIEdit

MyObiject CATEXxtIEdit
]\ TSTEEditOnMyObject
Activate()

Activate makes new Command which is used for creation and modification

Copyright DASSAULT SYSTEMES 2000

230

Object Properties

To add Properties for an object type:
— Ifit’s a DS object, use

CATIProperty

— If not, creates and implements
your interface to define
properties

— implement the

CATIEditProperties interface to
add your own tab page in both

cases

Object Properties edition
can be triggered thru :

— Selecting it, then ‘Edit’ menu bar

— Selecting it, then pressing
Alt+Enter

— contextual menu item

Copyright DASSAULT SYSTEMES 2000

—Attributes

()] Deactivated
@D To Update
&D rresol Ived
bdore... |
@ Ok J Q'."-‘«pplyl lﬂl:ancell
[-

231

Application Properties

Application Properties are edited thru

the Tools+Options command: | -]
7 Dpsoss Gowmiyl | datomgton | Dweiies | Linesws) | Fisbskos | WA Comwarsds |
T |
—] b it il
all global parameters are specified E Svv) il
here, some are specific to an B s "3I.::..:;;‘;“":;:::‘;M'.m.HE“=n:TLMH.
application, most are shared . | b P i
Hecharnsal Do =3 3 Lo iwrenced docoumeni:
among all of them. o e RS
i sl Smiion [G eisken
Bt | e T
their values are kept in «settings» 1= Sl e PR
repositories sometimes both in | [et Ot
administrator reference and in user | ["t
preferences R
« C:\Winnt\Profiles\User\Application I_ @ =] @ e

Data\Dassault Systemes\CATSettings

the interface to implement when
adding a new tab page is
CATlUserSettings

Copyright DASSAULT SYSTEMES 2000 232

Application Integration

Two ways to integrate your commands in the CATIA
V5 frame:

— Define a Addin in a specific context:

» add some toolbars in an existing workbench

— Define a new workbench linked to a specific
workshop

Copyright DASSAULT SYSTEMES 2000 233

Addin

Define an object that implements the Addin interface of an
existing workbench (Toolbar but not menu)

Two methods to implement:
void AddinObject::CreateCommands()
CATCmdContainer * AddinObject::CreateToolbars()

AddinObject (O CATI...Addin

Copyright DASSAULT SYSTEMES 2000 234

Workbench

Define an object that implements the Workbench interface
of an existing workshop (Toolbar and menu)

Define an Addin interface for your new workbench

Two methods to implement:

void WorkbenchObject::CreateCommands()
CATCmdWorkbench * WorkbenchObject ::CreateWorkbench()

Copyright DASSAULT SYSTEMES 2000 235

Workshop / Workbench definition

Workshop.cpp

CATCmdWorkbench * MyWorkbench::CreateWorkbench()

{
NewAccess(CATCmdWorkbench,pMyWorkbench,NewWorkbench);

NewAccess(CATCmdContainer,pMyContainer,NewToolBar);
(pMyContainer,“MyToolbar");

NewAccess(CATCmdStarter,pStarter1,NewButton1);
(pStarter1,“MyCommand1");
(pMyContainer,pStarter1);

NewAccess(CATCmdStarter,pStarter2,NewButton2);
SetAccessCommand(pStarter2,“MyCommand2");
(pStarter1,pStarter2);

(pMyContainer,1,Right);
SetAccessChild(pMyWorkbench,pMyContainer);

Copyright DASSAULT SYSTEMES 2000

Define the workbench

Define the container in
which the commands will be
instantiated. It can be a
toolbar or a menu

Define a starter that will be
associated to a command
header and then arrange the
command order

Define the container as a
toolbar,position it by default
on the right and include it in
the workbench

236

Workshop / Workbench definition

Workshop.cpp

CATCmdWorkbench * MyWorkbench::CreateWorkbench()
{

NewAccess(CATCmdContainer,pINSERT,INSERT);
NewAccess(CATCmdContainer,pMyMenu, MyMenu);
SetAccessChild(pMyMenu,pINSERT);

NewAccess(CATCmdStarter,pMyCommand1,MyCommand1);
SetAccessChild(pINSERT, pMyCommand1);
SetAccessCommand(pMyCommand1,“MyCommand");

SetWorkbenchMenu(CATCmdWorkbench1, pMyMenu);

return CATCmdWorkbench1;
}

Retrieve the Insert Menu

Define another container to
be aggregated in the Insert
menu

Define the container as a
menu in the workbench

Copyright DASSAULT SYSTEMES 2000

237

Main Interfaces to be implemented by an
Object

CATICutAndPastable CATIEditProperties

Cut/Copy / Paste Define specific properties

CATIEdit CATI2DGeoVisu
Edit CATI3DGeoVisu
Display in 2D / 3D
LifeCycleObject
Delete CATINavigateObject

Display in the graph viewer

Copyright DASSAULT SYSTEMES 2000 238

Additional Information : MVC model

integration

Select

Application K

Container

Spec Object

e

ObjectTyp1

ObjectTyp2

Copyright DASSAULT SYSTEMES 2000

Init, Persistent,...

y CDPoZment

_c Edit,InPlaceSite,UlActivate

[=Y-Ya

CSO

Root container

DocTyp1

DocTyp2

Window IO \

Viewer

A
3DGeoVisu)— Viewer |
2DViewer
N\
NavigateObjecD— Graph
239

To Sum Up ...

In this Course you have seen...

¥ How to create Workbench and Toolbar
« How to integrate your commands (application)

% The selection of an object in the CATIA V5 frame

Copyright DASSAULT SYSTEMES 2000 240

CAA V5 DialogEngine

In this course you will learn the mechanisms necessary to
describe and to manage the dialog of an interactive command,
how to monitor the interactions at run time and manage
Undo/Redo capabilities

@ Objectives of CAA V5 DialogEngine
@ Main notions
@ How to define a new interactive command

Copyright DASSAULT SYSTEMES 2000 241

CAA V5 DialogEngine Objectives

Provides all the objects and mechanisms
necessary to describe and to manage the
dialog of an interactive command

Monitors the interactions at run time

Manages Undo/Redo capabilities

Copyright DASSAULT SYSTEMES 2000 242

Main notions

In this lesson you will learn the Commands management in CATIA V5

& Notions to describe a dialog

& Finite State Machine

& Dialog Agent

= Dialog Command Life Cycle

& [nterruption by another command
&= Managing Undo/Redo

Copyright DASSAULT SYSTEMES 2000 243

Notions to describe a dialog

— A State is a step in a dialog where the program is waiting
for an input.

— The type of the input is defined at each state.

— A Transition is defined between a source state and a
target state.

— Itis triggered by a Condition:
o at least event-driven: an end user interaction
e conditional, it validates the user input

— When a Transition is triggered, the target state becomes
the active state.

— An Action can be executed during a transition.

Copyright DASSAULT SYSTEMES 2000 244

Finite State Machine

Initial State

Intermediate States

>[Indicate Position 1] < Proposed
Interaction

Mouse Button 1 Click
[Indication in the right location?] €«— Condition

| Point1 = CreatePoint(Position1) €— Action

Transition

[Indicate Position 2]

Mouse Button 2 Click
[Indication in the right location?]
| Point2 = CreatePoint(Position2)

/| Line = CreateLine(Point1,Point2)
Final State @
>

Copyright DASSAULT SYSTEMES 2000 245

Dialog Agent

A Dialog Agent translates a user interaction into a user
input

Ex: a CATIndicationAgent converts a left button mouse click in a 2D viewer as a 2D-
coordinate input

It hides the details of how a user interaction is converted as

a user input. I
It helps us define an input-driven dialog Indicate
instead of an event-driven one. Position1

Position1 ?

Copyright DASSAULT SYSTEMES 2000 246

Dialog Agent

It simplifies the State Charts
when composite inputs are t
necessary at one state.

Sphere Center

As soon as a dialog agent is Sphere Radius
valuated, it’'s not proposed ' _
an ymo re [Center && Radius ?]
- If this behavior is not suitable, the dialog ICreateSphere
agent needs to be defined as a repeater.
» SetBehavior(CATDIgEngRepeat) @

A dialog agent can be reused by
recycling it after retrieving the
input.

» InitializeAcquisition()

Copyright DASSAULT SYSTEMES 2000 247

Dialog Command Life Cycle

> o
>
-
K

é Automatic)

transition
Start » Begin » End - Default
BuildGraph() Activate() Cancel() Command

Restart

Copyright DASSAULT SYSTEMES 2000 248

Interruption by another command

The interrupting command is exclusive

Interrupting

>
command
Current
command Cancel()
The interrupting command is shared

Interrupting

command
Current
command Desactivate() Activate()

Copyright DASSAULT SYSTEMES 2000 249

Managing Undo/Redo

Two levels of Undo/Redo
Input Undo/Redo within a command
Command Undo/Redo

When an action is associated to a transition, an Undo
method should be defined

Within a command if the Undo command is activated, the
previous transition is inverted and if there was an
action, the corresponding Undo method is run.

Then, when out of a command, global Undo methods are
executed to cancel the results of the previous
commands

Copyright DASSAULT SYSTEMES 2000 250

Undo

Undo

-

Copyright DASSAULT SYSTEMES 2000

Managing Undo/Redo

(o]

Undo

Cancel the 2nd
point selection

Undo

Cancel a point creation

(© o
S
c
o D
o =
Q.
=
o
Cancel the 15t
Undo point selection
3
(o} c
o o -
€
o) ©
o £
£
S
o O

Cancel the triangle

251

How to program an interactive command

In this lesson you will learn how to program a new interactive command

= CATStateCommand

& Resource file

= Command with/without an argument

& Define the State Charts

& Define the States

& Dialog Agent Main Types

= Dialog Agent Behaviors

& Propose Multi Acquisition

& Retrieve Multi Acquisition

& Plug the Dialog Agents to the states

= Define simple condition to trigger transitions
& Define condition constraining the user input
& Define action done in a transition

CopyrlngpS ULT§QTE glzlo?)g 252

The CATStateCommand Class

— Create a new class deriving from CATStateCommand
— Overload at least:

 To describe your own state chart
— BuildGraph()

« To manage properly your command life cycle
— Activate()
— Desactivate()
— Cancel()

— Define some specific methods that will be used as
conditions or actions

— Store as data members the dialog agents used in the
command

Copyright DASSAULT SYSTEMES 2000 253

Resource file

— All the text messages that appear on the screen should

be defined through a resource defined in a Resource file
linked to the command.

Class MyCommand: public CATStateCommand

{ This defines a resource file MyCommand.CATNIs
where all the command resources will be defined
DeclareResource(MyCommand, CATStateCommand)

MyCommand.myResource.Message=“Select the first Point";

— Resource files are stored in:

« Catia\Codelintel _a\CNext\resources\msgcatalog

 The English and default version is stored in this
directory. The translated version is stored in a sub-
directory linked to the language name:

—French / German / Japanese

Copyright DASSAULT SYSTEMES 2000 254

Command with/without an argument

CATCreateClass(MyCommand)

This macro is mandatory to be able to instantiate a
corresponding command header in a toolbar or a menu

— Sometimes it’s interesting to pass an argument to a
command, so the command can be reused for creation

and also for edition

CATCreateClassArg(MyCommand,CATISample)
MyCommand::MyCommand (CATISample * iArg)

Copyright DASSAULT SYSTEMES 2000 255

Define the State Charts

Overload the BuildGraph method

» Create all the states

 Define the dialog agents you need

* Plug the dialog agents in the corresponding states
 Define the transitions between states:

— Source and target states
— Condition
— Action

Copyright DASSAULT SYSTEMES 2000 256

Define the States

void MyCommand::BuildGraph()

{ The initial state is already created.
CATDialogState * State1 = GetlnitialState(“Start”);

CATDialogState * State2 = AddDialogState (“Second”);

Copyright DASSAULT SYSTEMES 2000 257

Dialog Agent Main Types

— CATDialogAgent is the main class

» This class can be used to define an agent linked to a
panel object

_AgentPanelOK = new (" AgentPanelOK ");

_AgentPanelOK->AcceptOnNotify(_MyPanel,
_MyPanel->GetDiaOKNotification());

— CATIndicationAgent retrieves the coordinates of a 2D
Point when clicking in a viewer.

— CATPathElementAgent retrieves the path element of the
object under the mouse when clicking

Copyright DASSAULT SYSTEMES 2000 258

Dialog Agent Behaviors

Limit the selection
to objects that implement

_myAgent = new CATPathElementAgent(“myAgent"); a given interface

_myAgent -> (CATISample::ClassName());
_myAgent -> (CATDIgEngWithPSOHSO|CATDIgEngWithPrevaluation);
AddCSOClient(_ myAgent); A valid object is highlighted when

the mouse is located on it

Enable the Object / Action dialog style.
Look in the CSO (Current Set of Objects)

Copyright DASSAULT SYSTEMES 2000 259

Plug the Dialog Agents to the states

_myAgent1 = new CATPathElementAgent(“myAgent1");
_myAgent2 = new CATPathElementAgent(“myAgent2”);

tate1->AddDialogAgent(_myAgent1);
tate2->AddDialogAgent(_myAgent2);

Several agent can be plugged to the same state.

Copyright DASSAULT SYSTEMES 2000 260

Define simple condition to trigger
transitions

A transition is at least triggered by an end user

m interaction that valuates the dialog agent.
AddTransition(State1, State2,
Mouse Button 1 IsOutputSetCondition(_myAgent1), ...);
Click

AddTransition(State2, NULL,
m IsOutputSetCondition(_myAgent2), ...);

Copyright DASSAULT SYSTEMES 2000 261

Define condition constraining the user
input

The condition method signature is:
« boolean ConditionMethod (void* iUsefulData)

[Indication in the right location?]

AddTransition(State1, State2,

AndCondition(lsOutputSetCondition(_myAgent1),
Condition((ConditionMethod)&MyCommand::CheckPosition,
CATIPoint* PointToBeChecked));

The transition is triggered by an end user
interaction and an additional condition.

Copyright DASSAULT SYSTEMES 2000 262

Define action done in a transition

The action method signature is:
 boolean ActionMethod (void* iUsefulData)

| Point1 = CreatePoint(Position1)
=
AddTransition(State1, Stafie2, AndCondition(lsOutputSetCondition(_myAgent1),
ConTition((ConditionMethod)&MyCommand::CheckPosition,
CATIPoint* PointToBeChecked)),
Action((ActionMethod) &MyCommand::CreatePoint,

(ActionMethod) &MyCommand::UndoCreatePoint,
(ActionMethod) &MyCommand::RedoCreatePoint,...));

Copyright DASSAULT SYSTEMES 2000 263

Additional Information: Propose Multi
Acquisition

To enable multi-selection for a path element dialog agent, set
its behavior to CATDIgEngMultiAcquisition.

_myMultiSelAgent = new CATPathElementAgent(“myMultiSelAgent");
_myMultiSelAgent ->AddElementType(CATISample::ClassName());
_myMultiSelAgent ->SetBehavior(CATDIgEngMultiAcquisition);

Enable the multi-indication or the multi-selection.
Multi-selection is possible using:

1. a trap,
2. the Search command, either run from the Edit menu

or from the Power Input field,
3. the Selection Set command to reuse stored pre-

selected elements

Copyright DASSAULT SYSTEMES 2000 264

Additional Information: Retrieve Multi
Acquisition

To retrieve the selected objects, use the GetListOfValues
method.

CATSO* pObjSO = _myMultiSelAgent->GetListOfValues();
CATPathElement *pElemPath = NULL;
if (pObjSO)
{
pObjSO->InitElementList();
while (NULL != (pElemPath =(CATPathElement*)pObjSO-> NextElement()))
{
CAAIMyObj *pIMyObj = (CAAIMyObj *)pElemPath->FindElement(
IID_CAAIMyObj);

Enable the sort of selected elements

Copyright DASSAULT SYSTEMES 2000 265

Additional Information: Rubber Banding

Define a self transition

Use a Dialog agent with specific behaviors
« CATDIgEngWithPrevaluation

— The agent can be valuated by the object that is under the mouse without
selecting it.

« CATDIgEngAcceptOnPrevaluate

— The transition is triggers when the agent is valued without selecting.

The condition to trigger the transition is:
» IsLastModifiedAgentCondition(_myAgent)

After performing the corresponding action, the dialog
agent needs to be recycled by:

» [InitializeAcquisition()

Copyright DASSAULT SYSTEMES 2000 266

To Sum Up ...

In this Course you have seen...

& How to define a new interactive command

% The management of the command

Copyright DASSAULT SYSTEMES 2000

267

Dialog

In this course you will learn the CATIA V5 infrastructure to build
Dialog Boxes

Framework objectives

Building graphic user interfaces
Retrieving user inputs

® The Dialog builder

Copyright DASSAULT SYSTEMES 2000 268

Framework objectives

In this lesson you will learn the Dialog Framework objectives

&= Dialog Objectives

Copyright DASSAULT SYSTEMES 2000 269

Framework objectives

Dialog Objectives

Programmer
productivity

Portability

Standard
compliance

Versatility

Copyright DASSAULT SYSTEMES 2000

High level objects and widgets

Promotion of reusable
components

Abstract objects for:
— UNIX
— MS WINDOWS

Built on top of high level native

software
— OSF/MOTIF
— MFC

Dialog applications can be run in:
— CATIA V4 - CATIA V5
— Stand alone

270

Building graphic user interfaces

In this lesson you will learn what are the Dialog objects

= Provided Objects

= Window

&= Bar

&= Menu

= Dialog Objects

&= Dialog Design Steps
= Layout Management
= Resources

Copyright DASSAULT SYSTEMES 2000 271

Building graphic user interfaces

Provided Objects
— Containers - Components
Used to group, structure, and the building blocks of
present component objects Graphic User Interface.
into dialog windows. May be linked to
Different types: application functions
(1 Window Different types:
(1 Menu [Indicator
[l Bar [1 Control
(1 Box [1 Menu Item

Copyright DASSAULT SYSTEMES 2000 272

Building graphic user interfaces

Window
A window is an independent resizable container
in which other Dialog objects are created.
Class Usage
CATDIgDocument The main window for any application
CATDIgDialog Transient window for a particular task
CATDIgNotify Transient window for short messages
CATDIgFile File selection window

Copyright DASSAULT SYSTEMES 2000 273

Building graphic user interfaces

Window Types

CATDIgDocument

T Prime [l Puiegn i Guiw By |

B e NFEEeR]

s by 4w et

wr o R ‘1&

EU2E ealp |

CATDigDialog

i Burger Order-Entry Box Mi=] E3
Hamburgers Friez Drrinks
" Rame v Eetchup Size Ismau j Apple Juice i’
& Medium [Mustard E!uantit_l,i5|:| DL Juice
~ ‘well Done [~ Pickle Cola =
Cuantit

i .'r'l1.EIEIIZIEIEIEI E

[Mayornaise
-[r 2

Apply | Dligmizz Reszet |

CATDIgNotify

Error

)
1 Mo macro name entered or selected.
Fleasze enter or select a macro name.

Copyright DASSAULT SYSTEMES 2000

CATDIgFile

T - | |

e T —

T v prea s

e | =
-CH'\II

274

Building graphic user interfaces

Bar

A bar is a standard permanent zone
for task starter or information fields.

Class Usage
CATDIgToolBar Zone with direct access to application tasks
CATDIgStatusBar Zone for transient or permanent information

Copyright DASSAULT SYSTEMES 2000 275

Building graphic user interfaces

Menu

A menu is a pop-up container for permanent task starter.

Class Usage

CATDIgBarMenu Bar for main application menus
CATDIgSubMenu Pop-up menu
CATDIgContextualMenu Contextual menu

Copyright DASSAULT SYSTEMES 2000 276

Building graphic user interfaces

Menu Items
A menu item is a pop-up control for permanent task starter.
Class Usage
CATDIgPushitem Command button in a menu
CATDIgRadioltem Radio button in a menu
CATDIgCheckitem On/Off button in a menu
CATDIgSeparatoritem Separation line in a menu

Copyright DASSAULT SYSTEMES 2000

277

Building graphic user interfaces

Dialog Objects
Check
Button Label Combo
[MOTIFburger Jrder-Entry Box =] E3
_ Hamb iy ars Fries Dr‘ins Sele_Ctor
Rale)‘F Rare v Ketchup Sizel.“u'nedium - Ie Juic Llst
B utto n Medium W Mustard Quan‘ri’rylﬁ_ I'IE'I:E
¢ Well bone [T Pickle Caola =|

N ¥ Onion Quantity 5,000
Slider > 5:| I~ Mayonnaise
il ﬂl f Dismiss | M&

Frame Separator| | Push
Button

Copyright DASSAULT SYSTEMES 2000 278

Building graphic user interfaces

Dialog Objects : Box

A box is a container for different kinds of presentation.

Class

CATDIgFrame
CATDIgContainer
CATDIgTabContainer
CATDIgTabPage
CATDIgSplitter
CATDIgiconBox
CATDIgWindows
CATDIgMOTIF

Copyright DASSAULT SYSTEMES 2000

Usage

Basic container to group dialog objects
Fixed size scrollable container

Tabbed index container

Tabbed index page

Two zones separated by a sash

Pop-up container for icons

MFC widget container

MOTIF widget container

279

Building graphic user interfaces

Dialog Objects : Indicator

An indicator is a passive component to enhance the presentation.

Class Usage

CATDigLabel Text or icon

CATDIgSeparator Vertical or horizontal separation line
CATDIgProgress Progress indicator for long operations

Copyright DASSAULT SYSTEMES 2000 280

Building graphic user interfaces

Dialog Objects : Button

A button is a single action control to start tasks or set options.

Class Usage

CATDIgPushButton Command button
CATDIgRadioltem Radio button
CATDIgCheckitem On/Off button

Copyright DASSAULT SYSTEMES 2000 281

Building graphic user interfaces

Dialog Objects : Control

A control is an object with which the end user interacts.

Class

CATDIgEditor
CATDIgCombo

CATDIgSpinner
CATDIgSlider

CATDIgScrollBar
CATDIgSelectorList
CATDIgMultiList

Copyright DASSAULT SYSTEMES 2000

Usage

Entry field

Entry field with list
Numerical value selector
Numerical value selector

Scroll handler
List selector
Multi-column list selector

282

Building graphic user interfaces

Dialog Framework Objects

CATDIgSeparator

CATDIgLabel

CATDIgProgress

CATDIglconBox

Copyright DASSAULT SYSTEMES 2000

CATDialog

—» CATDIgWindow L CATDIgBar —|—> CATDIgControl
CATDIgDocument CATDIgToolBar CATDIgPushButton
CATDIgDialog CATDIgStatusBar CATDIgRadioButton
CATDIgNotify p CATDIgMenu CATDIgCheckButton
CATDIgFile CATDIgBarMenu CATDIgSelectorList

CATDIgBox CATDIgSubMenu CATDIgIMultiList
CATDIgContainer CATDIgContextualMenu CATDIgCombo
CATDIgSplitter M CATDIgMenultem CATDIgEditor
CATDIgTabContainer CATDIgPushitem CATDIgSpinner
CATDIgTabPage CATDIgRadioltem CATDIgSlider
CATDIgFrame CATDIgCheckltem CATDIgScrollBar
CATDIgSeparatoritem

— Key—

Containers

Components

Abstract class
Concrete class

283

Building graphic user interfaces

Dialog Design Steps

First, determine the type of your dialog

o Itis a dialog box or a window that contains
several representations of a document.
— Create a class that derives from

» Itis a message pop-up.

— Instantiate the class
e Itis a file selection box.
— Instantiate the class.

 Itis an application main window.

— Create a class that derives from

— Add a menu bar, a status bar, etc... (these object are provided by the
Dialog framework or by the ApplicationFrame framework).

Copyright DASSAULT SYSTEMES 2000 284

Building graphic user interfaces

Dialog Design Steps

Second, design the dialog appearance.
o Controls, frames, labels...
o User interactions and actions.
o Specifies the layout of the dialog.

Third, implement callback methods.

» A callback is called in response to a user
interaction with a control.

« You should provide one callback per user
interaction.

Fourth, provide dialog resources.

 Resources are text and graphics displayed in
the dialog.

« Using resources facilitate translation.

Copyright DASSAULT SYSTEMES 2000 285

Building graphic user interfaces

Layout Management

— The layout defines the way the objects are

organized inside a container.

 when the container —

is initially
displayed

e when the
container's window
is resized

Copyright DASSAULT SYSTEMES 2000

286

Building graphic user interfaces

Layout Management

There are two kinds of layout management
« Basic layout management
— Dialog objects are dispatched in containers,

— generally sufficient to build most of non
resizable windows.

» Grid layout management

— Container is divided into cells, dialog
objects are placed inside a cell,

— for more complex and/or resizable windows.

— Dialogs generated by the Dialog Builder use
the grid layout.

Copyright DASSAULT SYSTEMES 2000 287

Building graphic user interfaces

Basic Layout Management

- An object has a "natural” size depending on its
definition parameters.

Once its children are placed, the size of a
container is known.

o SetRectDimensions()

Children are displayed in their container in the
order in which they are created.

Copyright DASSAULT SYSTEMES 2000 288

Building graphic user interfaces
Basic Layout Management

» By default, all the objects of a

container are arranged side by side,

horizontally, justified on top, in the

order in which they are created.

o This default can be changed to
Vertical by using the
SetDefaultOrientation method:

_container->SetDefaultOrientation(Vertical);

« The objects can be resized in order

to fill all the room in the container

by using the Attach4Sides method

__container->Attach4Sides(child1),;
__container->Attach4Sides(child2),
__container->Attach4Sides(child3);

Copyright DASSAULT SYSTEMES 2000 289

Building graphic user interfaces

Grid Layout Management

For more complex cases and/or for resizable
windows, the Grid Layout should be used:

* Objects are placed within a grid

Columns 0

Bows kMacro

taco Name:
Hun

|
iE:"-.users'xpsr"«M acrozhhacroz danz la dochInfraztructure\C ! st

| —

parh acroshi acroz dans la dochnfrastructurehC

E dit
0 Create

= elect

RERE

Delete

ik

- 5 —
1 b acro i !E:-cternal File - I|

— Llezchphian

Copyright DASSAULT SYSTEMES 2000 290

Building graphic user interfaces

Grid Layout Management

To use the grid layout, you need to:

» Create a container using the CATDIgGridLayout
style

__container = new CATDIgFrame(this,"MyContainer",CATDIgGridLayout);

« State where to place each dialog object inside
the container

« State how to attach each dialog object with
respect to the cell sides

« Enable rows and columns for resize.

Copyright DASSAULT SYSTEMES 2000 291

Building graphic user interfaces

Grid Layout Management

« To place a dialog object you can either
— create a CATDIgGridConstraints object and assign it to the dialog

object,

CATDIgGridConstraints gridCst;
gridCst.Row = 1;
gridCst.column =1;
gridCst.H_Span =1;
gridCst.V_Span = 1;

gridCst.Justification = CATGRID_4SIDES;

pCircleLimitationsFrame->SetGridConstraints(gridCst);

— or set the grid constraint on the dialog object

pCircleLimitationsFrame->SetGridConstraints(1,1,1,1,CATGRID_4SIDES);

Zircle Definittion

0 Circle type IEenter and radiuz

T o selection

-

L

Support: | Mo zelection

|5®|Q|u|

1 R adius: |2|:|ITIITI E Start: IDdeg E
[Geometry on suppart End: [180deg =
@ o | @ sl | SESEE

Copyright DASSAULT SYSTEMES 2000

CircleLimitationsFrame:

- placed at row 1 and column 1,
- 1 row span and 1 column span,
- attached to four sides.

292

Building graphic user interfaces

Grid Layout Management

e Use the SetGridColumnResizable and
SetGridRowResizable methods to specify which
columns and/or rows will be sensitive to the
container resize

— By default rows and column are non
resizable.

— Example : first row and second column are
set to be resizable.

container->SetGridRowResizable(0,1);

container->SetGridCoIumnRe?‘,1 5
Column index 0 for non resizable

1 for resizable

Copyright DASSAULT SYSTEMES 2000 293

Building graphic user interfaces

Resources

— What are resources

 Resources could be text or icons displayed by
the application.

» Text resources are compatible with National
Language Support

 Resources can be changed without
recompilation

Pad Defintion EH

First Limit Text resources are

T | Dimersion f_"l’g// stored in a CATNIs file

LirrTe: | Mo zelection
— Prafile

Selection: [Sketch.1 (@ '/
Reverze Direction I

_—~ Path to Icon resource is stored in a CATRsc file

Copyright DASSAULT SYSTEMES 2000 204

Building graphic user interfaces

Assigning Resources

Declare resources in your object

MyDialogBox.h

class MyDialogBox : public CATDIgDocument {
DeclareResource(MyDialogBox, CATDIgDocument);

h Father class for
resource inheritance
— Create resource files o
« One message file (CATNIs) for each supported
language.

« One CATRsc file for non message resources.

El{:l CHext
- B0 code

1 *

500 resouross Icon files (*.bmp)

. =@ Fg‘”*‘“ English files { MyDialogBox.CATNIs

- [eons MyDialogBox.CATRsc
El{:l rzgeatalog 0/ y g

~-{_] French #e——— French language support files

Copyright DASSAULT SYSTEMES 2000 295

Building graphic user interfaces

Assigning Resources

— Using user defined resources

« These are messages that you define and use by
yO urs el f. MyDialogBox.cpp
CATUnicodeString text = CATMsgCatalog::BuildMessage(“MyDialogBox”, “Pick”);

MyDialogBox.CATNIs Message Key
Pick = “Indicate coordinates”; Message File

— Using predefined resources

« Every dialog object have some predefined
resources, like title, help and icon.

 To use them, declare them in your CATNIs or
CATRsc file.

MyDialogBox.CATNIs
Title = “A simple panel”;

Copyright DASSAULT SYSTEMES 2000 296

Building graphic user interfaces

CATDialog Predefined Resources

e Text Resources

— Title : object title string

— Mnemonic : Alt key shortcut to select a displayed menu or menu
item

— Accelerator : Ctrl key shortcut to select a menu item

— Help : help message associated with the object

— ShortHelp : short message displayed when the mouse stays over
this object.

— LongHelp : message displayed when the user clicks on Help button
or on the ? box, the cursor becoming a ?, and clicks on the object to
get help about it.

e Jcon Resources

— lIcon : dialog object default icon

— IconSel : icon displayed when this object is selected.

— IconFocus : icon displayed when the mouse moves over this object.
— lIconDisabled : icon displayed when this object can not be selected.

— lIconType : type of the icon (Default, General, Creation, Modification,
or Analysis), used to set a background color if the icon is
transparent.

Copyright DASSAULT SYSTEMES 2000 297

Building graphic user interfaces

Concatenation and Inheritance

— Concatenation

 Resources of contained objects can be defined
in the container object resource file.

PointEditBox. CATNIs f
Title = “Point Edition”; .-_/—:PEuurdinates_

. . « . ” #: [1-:000000 2]

CoordinatesFrame.Title = “Coordinates”; ._f““i T
CoordinatesFrame.Xlabel.Title = “X : ”; JZ. :

: 1EI.EIEIEIEIEIE
CoordinatesFrame.Ylabel.Title = “Y : ”;

@ ok | @ cancel|
-

— Inheritance

* Derived object inherit from any resources
defined in the father object.

Copyright DASSAULT SYSTEMES 2000 298

Retrieving user inputs

In this lesson you will learn how to associate Commands to your Dialog

& Defining a callback
& Dialog Engine Integration
& Application Architecture

Copyright DASSAULT SYSTEMES 2000 299

Retrieving user inputs

Defining a callback

Callbacks are set with the

AddAnalyseNotificationCB method

CATDIgDialog

44— MyDialog

Ko—

AddAnalyseNotificationCB leBuild ()

Control object that will callback

the current object

Notification

CB method

myFirstCB ()
mySecondCB ()

CATDIgPushButton *pOKButton;

Push Button

‘ Check Button

pMyButton = new CATDIgPushButton(this,“Apply”);
N‘dAnalyseNotificationCB (

 . pMyButton,

pMyButton->GetPushBActivateNotification(),

User data to be passed / NULL);

to the CB method

Copyright DASSAULT SYSTEMES 2000

—eo (CATCommandMethod)&MyDialog::myFirstCB,

300

Retrieving user inputs

Dialog Engine Integration

Associate a dialog to your command

CATStateCommand CATDIgDialog
BuildGraph () SetVisibility ()
i [
MyCommand [MyDialog
MyCommand () Build () ¢
BuildGraph () A (
\4 Dialog definition
State Machine definition (layout, controls)

(states, agents and transitions)

panel = new MyDialog();

panel->Build(); Provided by Dialog framework Key
panel->SetVisibility(CATDIgShow); To be overloaded by application programmer
Provided by application programmer

Copyright DASSAULT SYSTEMES 2000 301

Retrieving user inputs

Dialog Engine Integration

Use a DialogAgent instead of a callback when you
want to perform a transition.

:MyCommand IO _panel:MyDialog
MyCommand () Build
uildGraph () I
MyActionMethod () T
T _ctl:CATDIgSpinner
agent:CATDialogAgent GetXXXNotification ()
AcceptOnNotify () _ctl = new CATDIgSpinner (...);

agent = new CATDialogAgent(“Agent”);
agent->AcceptOnNotify(_panel->_ctl, _panel->_ctl->GetXXXNotification());
firstState->AddDialogAgent(agent);

AddTransition (firstState, secondState, IsOutputSetCondition(agent),
Action((ActionMethod)&MyCommand::MyActionMethod));

Copyright DASSAULT SYSTEMES 2000 302

Retrieving user inputs

Application Architecture

- CATlInteractiveApplication

Destroy ()

GetArgs ()
BeginApplication ()
EndApplication ()

[

CATDIgDocument

SetVisibility ()

JAN

MyApplication [

®BeginApplication ()
EndApplication ()

_window = new MyWindow(this,“myWindow”);
_window->Build();
_window->SetVisibility(CATDIgShow);

Copyright DASSAULT SYSTEMES 2000

MyDocument
Build ()

EXItCB () &~

\

_application->Destroy();

To be overloaded by application programmer

Provided by Dialog framework Key
Provided by application programmer

303

The Dialog builder

In this lesson you will learn the CATIA V5 wizard to define your Dialog

& Dialog Builder

Copyright DASSAULT SYSTEMES 2000 304

The Dialog Builder

Dialog Builder

CATIA Dialog Builder facilitates panel creation and
edition.

» Access through menu or by double-clicking on an existing *.CATDIqg file.
* Generates C++ code.

* Possibility to define Callbacks. Dialog Builder Toolbar

A

)
Besource.. Chl+R |« || | 2 | BItBoltDlg =1 3
B E E [% Ea J It Head Paint | . =
Eesaurce [EapE,, A || [enstien: —
=
Cad WE Clags... [| s : 0000000
B | |ogn 0000000 =

Component. .. &
=

Interface. .. =

Test-Caze. .. | —

CATIA Resource Earrisial B[

CATILA Pattern. ..

Copyright DASSAULT SYSTEMES 2000 305

To Sum Up ...

In this Course you have seen...

% All the Dialog Objects provided by CATIA V5
« How to associate Commands to the Dialog

&« The Dialog Builder

Copyright DASSAULT SYSTEMES 2000 306

CAA V5 Administration

You will learn what are the prerequisites to install CAA on a
workstation and how to manage the applications build with

CAA

&= Packaging

= Licensing

= Software Prerequisites

= Delivering a CAA build Application

Copyright DASSAULT SYSTEMES 2000 307

CAA V5 Physical Packaging

Rapid Application Development Environment (one CD)

A set of programming tools

V5 API for CATIA (one CD)

A set of headers with their corresponding documentation
The CAA V5 Encyclopedia

Copyright DASSAULT SYSTEMES 2000 308

CAA V5R7 Packaging and Portfolio

et
caa-scm || caa-scm || caa-scm Add-on Y Customization with
e = CATIA

ST gia-on = ENOVIA server
CAA-DMC CAA-LWG = ENOVIA 3d com
CAA-CQ@N v' Data Federation with:
CAA-CSC “eN = ENOVIA 3d com
caacip || caa-cip | | caa-up " WEB browser
caa-mae|[caa-mae| |caa-mag| [caa-mag

IN3INdJO13A3d

z8Sv8 ++D

%
LN3IWdO13A3a

32‘0’8 VAT
> INOILVYOILNI
V1ivd AOVO3aT

(&
ENIINJO13AId
d2aN3LX3T ++D

CAA-CDC| | CAA-CDV] | CAA-JDV

I'_
o
O

Configurations

Copyright DASSAULT SYSTEMES 2000 309

CAA V5 RADE (for CATIA) includes

C++ Interactive Dashboard Product (CID)

Provide developers with an environment for building C++ Component Application
Architecture (CAA) applications

Tight integration with Microsoft Visual Studio C++

C++ Interactive Dashboard Product is only available on Windows NT and gives
access to the other RADE products.

Multi-Workspace Application Builder Product (MAB)

Provide a single tool to compile and link applications whatever the programming
languages used (Fortran, C, C++, Java)

Available both on NT and UNIX

C++ Unit Test Manager Product (CUT)

Enables users to check development compliance with design scenarios and to
ensure regression-free modifications, scenarios pertinence, automatic result
comparisons, timeout performance replay

Only on Windows NT : Integration with Rational Purify for memory management
tests and Rational Pure Coverage for test coverage
Copyright DASSAULT SYSTEMES 2000 310

CAA V5 RADE (for CATIA) includes

Data Model Customizer (DMC)
UML modeling authoring for ENOVIA object model & CATIA object model
ENOVIA Modeling object optimized publication capability

Offer same user interfaces for CATIA and ENOVIA object extension

C++ Source Checker (CSC)

Automatic check of C++ V5 coding rules
Memory leaks debugging

C++ source parser and full HTML report

Source Code Manager (SCM)

Workspace management

Collaborative and integrated code distribution
Concurrent development support

Version and configuration control
Multi-platform workspace management

Scales from small teamwork to large development organization
Copyright DASSAULT SYSTEMES 2000 311

CAA V5 Licensing Mechanisms

CDC or CDV license is to use CAA V5 RADE (C++)

CAA V5 can be used in two licensing modes, either nodelock or with concurrent
usage of licenses on a network, just like standard DS products.

Licensing mechanisms are based on LUM
(License Use Management)

Windows NT workstations must have a LAN Card (Ethernet or Token Ring) and
TCP/IP installed and properly configured, even in the case of nodelock licensing

On NT : Use Nodelock Key Management

Select the Start->Programs->CATIA->Tools->Nodelock Key Management command
to check Nodelock licenses if you use Nodelock licenses.

File Help
Target 1D: JE50E2ER

License Expiration |
@ DS247200000- DS24720 B4 days Ieft
AL2 A1 E1E days left

Copyright DASSAULT SYSTEMES 2000

CAA V5 Software Prerequisites (1)

C++ Interactive Dashboard Product (CID) requires

Microsoft Visual C++ 6.0 product SP3
The Unicode option MUST be selected when installing Visual C++

Microsoft Internet Explorer (delivered with Windows NT 4.0), at minimum level 4.01
Service Pack 1

Multi-Workspace Application Builder Product (MAB)
requires:

Some specific compiler level depending on the OS (cf. following foils)
JAVA JDK 1.1.6 or JAVA JDK 1.1.8 when using IDL compiler

Copyright DASSAULT SYSTEMES 2000 313

CAA V5 Software Prerequisites (2)

C++ Unit Test Manager Product (CUT) requires

For Automatic Run time batch test replay : MKS Toolkit® V6.1 on Windows NT
For Automatic memory management check : Rational Purify V6.5

For Automatic test coverage computation : Rational Pure Coverage V6.5

Access to Online Documentation requires an HTML

browser
In a UNIX environment : Netscape Navigator at minimum level 4.5

In a Windows environment, either Microsoft Internet Explorer at minimum level 4.01
Service Pack 1 or Netscape Navigator at minimum level 4.5

Copyright DASSAULT SYSTEMES 2000 314

CAA V5 Software Prerequisites (3)

Windows NT Environment

Microsoft Windows NT Workstation Version 4.0 with Service Pack 4 or 5 or 6a
Microsoft Visual C++ 6.0 product SP3

IBM AIX Environment

AIX Version 4 Release 3.3
IBM C and C++ for AIX Compilers Version 3.6.4 or 3.6.6 (ibmcxx).

Copyright DASSAULT SYSTEMES 2000 315

CAA V5 Software Prerequisites (4)

SGI IRIX Environment

IRIX 6.5.2m
C, C++, MIPSpro Compiler 7.2.1 (n32 ABI)

Sun Solaris Environment

Sun Solaris 2.6.0 or Solaris 7
C, C++, SUN WorkShop Compilers 4.2

HP-UX Environment

HP-UX Version 10.20 A.C.E. 4
C compiler A.10.32.03
C++ compiler aC++ A.01.21

Copyright DASSAULT SYSTEMES 2000 316

CAA V5 Installation Procedure

Check the CATIA installation

You need to have the same Release and Service Pack as for CAA

The directory path for CATIA cannot contains blank characters

Install CAA V5 API for CATIA

The V5 API are installed in the same directory than CATIA

Install first the GA version then the proper Service Pack

Install CAA V5 RADE

Choose a separate directory to install the CAA V5 RADE product

Install first the GA version then the proper Service Pack

Copyright DASSAULT SYSTEMES 2000 317

Delivering an Application (1)

Copy the Runtime View of your CAA application.

On NT only : use Environment Editor to create
a new environment

Select the Start->Programs ->CATIA ->Tools->Environment Editor command

Administrator - Mew Environ... [l=] E3

In the Dialog Box provide :

» A name for the new environment Nam%: : . Bz
Fath : |E.'~.P'rn:ugram FilezhDazzault Systemesh
» The path Mode : | User =l
« The mode (user/ global). The environment will be i
r Praduct Line : II:.-'E-.TI.-'l'-. j
available for all the users or only for the current one :
» The product line (CATIA)

The path has to reference CATIA and the Runtime View of your CAA application
c:\catia_vSl\intel_a;c:\myApplication\intel_a

Copyright DASSAULT SYSTEMES 2000 318

Delivering an Application (2)

On NT and on UNIX :
use the “setcatenv” command to create a new environment

The setcatenv command is located in \Install_folder\OS_a\code\bin
Install_folder is the directory where CATIA is installed
OS_a can be intel_a, aix_a, hpux_a, irix_a, solaris_a

The main options are :
-e : to specify the name of the new environment
-d: to specify the directory where the CATIA environments are stored
-p : to give the path

The path has to reference CATIA and the Runtime View of your CAA application
setcatenv —e myEnv —d c:\catia_v5\CATEnv —p c:\catia_v5;c:\myApplication

If the path contains a blank character, use double quotes (")
setcatenv —e myEnv —p "c:\Program Files\Dassault Systemes\B06;c:\myApplication

Copyright DASSAULT SYSTEMES 2000 319

Delivering an Application (3)

When you create a new environment :
The set of variables is defined

A new shortcut is created on the desktop to start CATIA with the new CAA
Application

A new command is created in the Start menu (NT only)
Start-> Programs-> CATIA -> myEnv

You can deliver more than one CAA Application

In the path, you can provide several directories
setcatenv —e myEnv —p c:\catia_v5;c:\myApplication1;c:\myApplication2

To delete an environment use delcatenv

Usage : delcatenv —e myEnv

Copyright DASSAULT SYSTEMES 2000 320

To Sum Up ...

In this lesson you have seen...

« The prerequisites to install CAA V5 on a workstation

« How to deliver a CAA V5 application to a customer

Copyright DASSAULT SYSTEMES 2000 321

